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Abstract
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particularlyn the Middle East and S&laharan AfricaSome have suggested that this process has
been exacerbated by climate change and weather évehis.paper, we evaluate these claims,
focusing on the role afroughts in influencingirregular migration flows tbe European Union

Drawing on temporally disaggregated data on the detection of unauthorized nitdyantseatal

borders we examine how weather shocks affect irregular migkateoshow thatveather wents

may indeed influenoeigration. Yet, in contradictioto the findings from recent research, we find

no evidence that a drought in a sending country increases unauthorized migration to the EU. If
anything, and while not entirebnclusive, the incidencedobughtseems rather to exert a negative,
albeit moderate, impagh the size of migration flows particular for countries dependent on
agriculture. Conversely, higher levels of rainfall increase mitvatioterpret tis as evidence that
international migrationgsstprohibitive and that adverse weather shocks reinforce existing financial
barriers to migration
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1 Introduction

Do environmental shocks cause migration from poor countries to theeEustgrawipisiBull

model of international migration suggests that factors in the receiving country such as economic
opportunities, political freedom, and family issXOOpnu LQ SHRSOH VHHNLQJ D EHW\
KDUGVKLSY DQG YLROHQFH FDQ "SXVKp SHRSOH R296)RI RULJI
With the accelerating pace of climatic change, it is plausible that disruptions to normal weather
paterns serve as an additional push factor as they can disrupt economic activity, particularly in the
agricultural sector. Indeed, many observers have linked climate shocks to food insecurity and large
scale movements of people. Titernal Displacement Mioring Centr¢IDMC) estimateshat

between 2008 and B)an average @fimillion people have been displaced by climate and weather
related disastefl®MC 2019).

A growing body of research has sought to uncover links between environmental factors and
migration. Feng et al. (2010) find that climate change and declining crop yields in Mexico lead, in part,
to migration to the United States. Missirian and Schi2@k&) report that temperature fluctuations
in countries of origin lead to additional asylum applications in Europe. In the same vein, Cai et al.
(2016) present evidence that rising temperature are associated with higher migration to OECD
countries, butmy for countries reliant on agriculture. Reuveny and Moore (2009) find that natural
disasters are positively linked to migration to developed countries. Looking at internal migration in
Indonesia, Bohrilishraet al.(2014) demonstrate that provib@g@rovince migration increases
significantly with higher temperatures and responds to a lesser extent to precipitation. Others have
reported similar results for Pakistan and the United States (Feng et al. 2012, Mueller et al. 2014). In
fact, a recent WorlBank report predicts that internal migration will increase substantially as a result

of climatic change (Rigaud et al. 2018).



Yet, others have found more complex relationships. Cattaneo and Peri (2016) observe that,
while higher temperatures in middi@®mme countries influence both international migration and
urban growth, the same temperature rise in countries at the bottom wealth quartile have a negative
effect on migration. Koulet al.(201, B, using survey data fr@gix countriesfind that slowy-
evolving natural disasters such as droughts do not prompt people to leave, as they are able to make
necessary adaptations. Thiede and Gray (2017) report that higher temperatures in Indonesia are
associated with less, not more migration, but that eetflagonset of the monsoon season increase
migration. Gray and Mueller (2012) find that disasters and crop failure only have modest and
LQFRQVLVWHQW HIIHFWV RQ PLJUDWLRQ LQ %DQJODGHVK 7k
a post disasteoping strategy, it does not do so universally, and disasters cardudacbility
E\ LQOFUHDVLQJ ODERU QHHGY DW WKH RULJLQ RU E\ UHPRYLC
Mueller 2012: 4). Thus, while natural disasters may be &toush faigration decisions, they may
also have countervailing effects on the propensity to le@salso worth noting thathers have
reported no association between environmental factors and international migration{déehBohra
andMassey 201 Beine and Parsons 2P13n addition, data garnered in Tambacounda, a high
emigration area in Senegal, show that climatic factors have little influence on migration to Europe
(Ribot et al. 2020).

In this paper we examine the competing claims that weladkeks$ such as droughts and
excess precipitati@mmay either increase or decrease emigration from a country. On one hand,
adverse weather events may disrupt livelihoods, especially in agepdtdent economies,
prompting migration. On the othernlda such shocks may decrease emigration by reducing the
financial means to migrate.

Our paper builds upon that of Missirian and Schl& X&), butrelies oradifferentmeasure

of migration irregular migratioto the European Union (ElLBs well asf environmental shocks



the Standardized Precipitation Evapotranspiration I{8f&I) In what followsweuse the terms

irregular or unauthorized migratinterchangeably to denote migration without a visa or other legal
travel documentsUnderstanding the relation between climatic variability and irregular migration is
important, both from a scientific and a policy perspective. First, irregular nigrati@veloping

countries represents a substantial share of migrants to the EU. More than 2.2 million irregular
migrants have been detected at EU external borders between 2009 and 2017, according to data
compiled by Frontex, the European Boater CoasBuardAgency(this figure exclud¢heWestern
Balkansouteaind theCircular route from Albania to).GBgeway of comparison, total immigration

flows from norREU countries amounted to over 13 million over the period2Z0@{Eurostat

2018) At its highest, thesé DOOH G "PLJUDWLRQ FULVLVHu VDZ PRUH W
attempt to enter tHeU. In addition to war and economic misery, several commentataiainzse

that climate changedaskeydriver of irregular migration to Eypeandthe United States.(.,The

Guardian 2015, The New York Times 2016, Washington Post 2018).

Second, the political salience of unauthorized migration is high and has arguably fueled the
rise of populist parties in Western countries. Third, while prior research has generally focused on
aggregate migration flows based on census data, theses stfiigtiexclude irregular migrants.
Despite a lack afystematic information, conventional knowledge on Mexican immigration to the US
holds that undocumented migrants tend to have lower socioeconomic and educational status,
compared to legal migrants fld@n 2006). They are also more likely to come from rural areas
(Orrenius and Zavodny 2005). Wthike validity of these studiesother contexteemains an open
guestion, there are reasons to believe that climatic variahiltlyivierunauthorized rgration
(Nawrotzki et al. 2015, Chort and de la Rupelle 2019). In fact, unauthorized migration is known to
be more responsive to the economic cycle than legal immigration (Hanson and Spilimbergo 1999). By

comparison, visa applications typically lastdoths, and may be subject to stringent requirements.



To our knowledge, our study is one of the first to systematically examine the effect of weather shocks
on irregular migration across a large number of countries and in the Europedn context

We contrbute to the literature lmfferinga nuanced account of the effects of environmental
change on migratiado the EU Wereportevidence consistent with the claim that droughts may
dampenmigration pressure. Conversely, higher than usual rainfaticeteasavith increased
irregulamigration to th&U. Furthermore, our results indicate that this dampening effect is primarily
driven by agriculturalfgliant countriesWhile outof-sample crosgalidations suggest that climate
variables nevesubstantially improve the predictive ahilityhe estimated modelsur findings
nonethelesdo not align with prevailing narratives that see droughgodoadi warmings associated
with a rise in migration to the EU.

In the next section, we review tkeent literature on weather variability and international
migration and formulate a set of observable implications. We then present the Frontex data used to
measure irregular migratitmthe EU and our main indicator of weather shocks, the Standard
PrecipitationEvapotranspiration Index. Section four discusses the results of the empirical analyses.

Finally, section five concludes.

2 Weather Shocks and Migration Theory

Classical models of migration assume that individuals move in response to different wage rates

between countries (Massey 1993) as well as within them @dgli§6h5. An alternative approach

views the household unit as the locus of degisading, wh the family choosing to send members

1 For a similar, but independent study, see Missirian. (@ 2@ompares UNHCR data on asylum applications with
Frontex data on irregular migration flows and examines the correlates ofrivigigian, including precipitation and
temperature levels6 KH UHSRUWYV Way Dedpohe toxehipakature@ver thaize growing area and season,
DOWKRXJK WKH UHODWLRQVKLS LV ZHDN DQG XQVWDEOHu S



to work in more lucrative areas in order to receive remittances and diversify risk (Massey 1993; Taylor

1999, Stark and Bloom 1985). Both approaches argue that differences in earnings potential between

origin and dgtination regions are a primary driver of migration. Survey data from China (Zhu 2002)

and Mexico (Quinn 2006), confirm that wage differences play a large role in migration decisions.
Adverse weather events can lead to disruptions in the local ecepoesgjrdy productivity

and economic growth (Ahmetal 2009; Burket al2015; Delet al2012; Rowhani 2011). Weather

shocks or large deviations from historical weather paftezas be particularly disruptive to

agrarian societies that do not haeesscto capital improvements such as irrigation, improved seeds

and fertilizers, and crop insurance mechanisms ad2003). Thus, weather shocks may threaten

food security and exacerbate wage differdmimleerdeveloping and developed coustléading

to increased pressure to emigréeevious studies have found that rurban migration in Sub

Saharan Africa (Barriesal.2006, Marchiori et al. 2012), as well as Vietham (Ngwl@®15), is

partly driven by weather shocks agdcultural decline. Others have found that international

migration also responds to adverse climatic events (Marchiori et al. 2012, Backhaus et al. 2015, Cai ef

al. 2016, Missirian and Schlenker 2017), and declining cropgmelesg].2010). While they do

not find evidence for a direct association with international migration, Beine and Parsons (2015) report

a potential indirect pathway through the effects of rainfall deficits on wage differentials.

Yet, migration to developed countries candostly endeavor, with no guarantee of success.
Studies have shown that the fees paid to human smugglers alonlléxet)Border have risen
dramatically with the trend toward greater immigration enforcement (Rolzr2010). For
potential Mexicamigrants, financial barriers are a significant impediment to emigration (Angelucci
2015 see also Stecklov et al. 2006 fact, recent research indicates that municipalities exposed to
lower levels of rainfall and high temperature havéseaninternational migrants (Riosmemal.

2018). Similarly, irregular migrants to Europe face significant smuggling costs, ranging on average



from 3,000 to 6,000 euros (Europol and Interpol 2016: 8). Dustman and Okatenko (2014)
demonstrate that migratiatecisions are ndmearly associated with incohrelatively wealthy
individuals do not have the incentive to migrate, while the very poor face budget constraints in making
the journey(see alsdicKenzieand Rapoport 2007)Kleemang2015) finds that, in Indonesia,
climatic variability has heterogenous effects with adverse weather shocks increasing the frequency of
shortdistance, rural moves, but decreasingdstance, urban moves. Evidence from a field
experiment in Bangladesiggests that perceptions of risks associated with migration make poor rural
households reluctant to send a migrant to cities, even when benefits are large (Bryan et al. 2014).
Given that weather shocks have the greatest negative consequences inuajrgsohgo
the agriculture sector; and c) vulnerable people with few resources, climatic events may have the short
term effect of reducing the resources needed to make distant journeys:réfgathdisasters may
depress migration rates between poantties and wealthy ones. In fact, 4distance moves
decreased during the 1983irought in Mali (Findley 1994Recent findingsuggest that rising
temperatures in poor countries correlate with lower rates of international migration, due to financial
barriers to migration (Cattaneo and Peri 2016). In addition, Gray and Mueller (2012) note that weather
shocks may increase local demand for labor, as poor households must devote greater effort to ensuring
minimallysufficient agricultural yielddenceadverse weathgiocks could further impovershor
communitiesnd thereby limit their ability to support the costs of migration (Black et al. 2013).
Therefore, the effect of weathelated shocks on international migration is ambiguous.
Climatic evetis may depress wages, overall economic growth, and threaten food security. This serves
as a push factor, leading to increased demand for emigration. However, weather shocks may have the
countervailing effect of diminishing the resources necessaryglyomagstion routes, especially

among the most vulnerable. Even if rurbn migration or migration to proximate countries



increases, financial costs associated with illicit entry into rich countries may be prohibitive. We thus

have the following hypeeses:

H1: Weather shocks in a sending country increase the level of irregular migration to the Europe

H2: Weather shocks in a sending country decrease the level of irregular migration to the Europe

Theearliediscussion also im@idat the association between weather shocks and migration
might be stronger in countries more reliant on agriculture. Indeed, previous research has documented
how droughts and excess rainfall negatively affect agriculturaligmmd@Reenzweigt al.2002,

Schlenker et al. 2009, Lobell et al. 2011). Furthermore, agricultural productivity is widely held to be
the primary channel through which climate change may affect international niRggdrstudies

have found evidence that agriculturally reliant countries experience higher rategy@tiont
(Marchiori et al. 2012, Cai et al. 2016; see also Chort and de la RupeMagd@)o et al. (2016)

report similar evidence as to tbeditional effect of the size of the agricultural sector for internal
migration across districts in South Afri¢at, this assumption has been questioned in the literature.
Cattaneo and Peri (2016) show that far from increasing migration, highetutespeeayricultural
societies decrease the rate of emigration. Similarly, Bazzi (2017) finds that negative precipitation
shocks depress international migration amongdémmcouseholds in Indonesia. Given the lack of

clear expectations in the litaratwith regards to moderating effects of the size of the agricultural
sector, we refrain from stating explicit hypotheses about the direction of the conditional relationship,

and opt for the following hypothesis:

H3: The (positive or negative) adssioiaBo weather shocks and the level of irregular migration tc

European Union is stronger in countries more reliant on agriculture.



While we focus on the agricultural sector in this paiserorth stating that we do not wish to deny

the possibility that other channels may also ma&terinstance, Hsiang (2010) and Zhang et al.

(2018) report evidence for a link between temperature and economic productivity.

3 Data and research design

Dependent variable: Irreqular migration

To measure the size of irregular migratienuse dateollected byrrontexfrom national border
authorities The data provide information on the number of illegal border crossings detected at the
external borders of tlt8J and Schengen Associated CounfitetandLiechtensteiNorwayand
Switzerland Not part of the Schengen area, the Udiegdom and Ireland aret covered It is

available in monthly formbm 2009 onwardsnd is disaggregated by {sgibrted) nationality of

migrants and migration routes (8 in jcd thédppendiy. Aside from its high temporal and spatial
granularity, drawing on the Frontex data presents two key advantages compared to alternative sources
of data on migration flows, such as from existing databases on migeatibio(iet al.2012 Beine

and Parsons 2015, Cattaneo and Peri 28l6fal. 2015or UNHCR data on asylum applications
(Missirian and Schlenker 2017). First, the data specifically focus on undocumented migrants, which
may evade registration by state bureaucracies, or may opt not to apply for asylum. In fact, migrants
who stad little chance of asylum success have incentives not to register with state authorities, and
thus are not included in statistics on asylum appli¢&ticadiscussion, see Missirian 20$@rond,

there could be a significant time lag between themamaividuals cross a border and when they

are added to a population register or apply for refugee $taigis becausedividuals may apply

for asylum only upon detection or arrest by authorities, or after overstaying legal visas. These events



mayoccur several years after entry in the ByJcontrast, the detection of unauthorized migrants is
temporally closer to the departure from the home country, and associated weather shocks. While
asylum applications and Frontex detections are correltiedda® level,theseare not identical
measuregoefficienbased on the sammkeTablel in Sectior).

[Figure 1 about here]

Figure 1 presents the total monttdte of apprehensions aggregated across all irregular
migrations routesver the period 202015 (corresponding to the time frame of the empirical
analysis conducted in Sectigrang with the number of migrants of unspecified origins. Aggregate
trends in the detection of irregular migration were mostly stable oeiciti20i 022013, hovering
between 60,000 and 130,000 detections/year. From 2014 onwards, irregular migration registered a
marked uptick by more than an order of magnitude, peaking in 2015 with more than one million
migrants detected. This increase ithaithble in large part to three countries: Syria, Iraq, and
Afghanistan, although other countries have also witnessed significant increases in irregular migration
to the EU over the same period (e.g. Pakistan, Eritrea, and Nigeria). Figure 1 aldmtreveals
migration patterns present high seasonality, with winter months consistently registering lower
migration levelsFigure 2 displays the distribution of irregular migrants by country of érigin.
disproportionate amount of migrants originate ftloenAfrican continentthe Middle East and
SouthAsia In fact, just five countrieeccountfor 64% of unauthorized migrants detected (Syria,
Afghanistan, Iraq, Eritrea, Nigerim) the Appendix we provide additional informatiom temporal
patterndor the eight largest sending countries ifrtbietexdata as welteport thetotalnumber of
irregular migrants by cooanof originover the perio@0102205.

[Figure 2 about here]
Nevertheless, there are potential limitations to using these data. First, the number of irregular

migrants detected is not only a function of thertameber of crossing attetyp EXW DOVR RI 7\
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DPRXQW RI HITRUW VSHQW >«@ RQ GHWHFWLQJ PLJUDQWVu E\
Hanson and Spilimbergo 1999). Thusstgeaar increase in the number of migrants detected could
eitherreflect a rise in the number of migrants, or a higher rate of detection resultstgdiem
enforcementSecond, the country of origin is-sefforted by the migrants. Some irregular migrants
PD\ SUDFWLFH "QDWLRQDOLW \to\h&lieve $hatGhispwill incvé&sel thei bhamteU H D V
of staying in Europe (Frontex 2017b: 19). Third, aggregating data from separate migration routes may
result in counting the same individual multiple times. This is a concerWestidr® Balkan Route
Migrants arriving in Greece by land or sea vizastern MediterraneantBadit® continue towards
Western European countries via the Balkans, and thus potentially be detected a second time at the
bordes with Slovenia, Croatia, and Hungdfgr thisreason, we exclutiee Western Balkan Route
andtheCircular route from Albania to(Gweeae alssemoveBalkan countries from the sample, as
well as the residual migration rpufeourth, as depicted in Figure 1, while the share of unspecified
nationality is generally I¢gan averagd.7% permonth) it exhibits considerable variation, reaching
about25% in April 2011 and 2014

To compute the dependent variable, we aggedhatgyration routes and take the natural
logarithm. We add unity to the dependent variable to avoid taking thezkrg.oAbout 7.6% of

the observations for Model 1 record zero migrants.

Independent variable: Weather shocks

Our primary indicator of weather shocks is ®eonth Standardized Precipitation
Evapotranspiration Index (SP&R.Q, a probability drought index (ViceSgrrano et al. 2010,
Begueria et al. 2014he SPEI is available at the monthly level and can be calculatedly for different
timescales: from a fhonth timescale up to 4&nth timescaleThe climate literature sidong

recognized that droughts are multiscalar phenom®o#a. water content, river discharge and

11



groundwater storage are important determinants of droudtesdegree to whicahydrological

system depends on these components is crucial in detettmeitimgscale at which droughturs
(VicenteSerrano et al. 2010: 188)/ We selected therBonth SPEI as a compromise timescale
between hydrological systems where immediate precipitations are an important determinant of
droughts and hydrological systems, which have access to groundwater, and for which drought emerges
at longetimescale We note that the prior literature offers little guidaSoee studies have used

the SPEI at very short timescales (1 month) (von Uexkull et al. 2016), while other focusing on arid or
semiarid countries have used longer timescale (12 m@htiedler et al. 2014, Kubik and Maurel

2016).

The SPEI isobtainedby first calculating a water balance indeltractingpotential
evapotranspiration (PET)om the monthly totalamount of precipitation The indexis then
aggregated at thesired timescal®ET, which measures the amount of water lost from the soil to
the atmosphere under hypothetical conditions, is calculated using the??entedin equation,
whichincorporates addition to temperature, winakegs, solar radiations and relative humidity (see
Begueria et al. 2014) threeparameter lefpgistic distribution is then fit to theter balandadex
in order to obtain a standardized drought indicator. The SPEI is an improvement over its precursor
the SPI, which did not account for the effects of temperature, via evapotranspiration, and hence is
unable to account for the increased duration and magnitude of droughts in recent times as a result of
global warming (Vicen&errano et al. 2010: 18698 Negative SPEI valsedicate water deficits,
while positive valseFRUUHVSRQG WR ZDWHU VXUSOXVHV UHODWLYH V
are provided at monthly intervals in a raster format with a 0.5 degree resolution.

To measure deviations at the coupdiyr level, wieakethe mean SPEI value per cell over
the past 1-2nonth ending with the current quaered average across all cells in given cotiatnge,

for the first quarter of the year, we take the average over the first three months of the current year

12



(JanuargMarch), as well as the nine last months in the previous yeddéA@miber)In computing
the value for a given country, we weighBBEIdataby population Data or2005global population
count is provided by the Gridded Population of the World (UN adjusted estimates) (v4.11) (CIESIN
2018).

Using a meteorological drought index is in contrast to some previous studies thitacte the
effects of temperature and precipitation on international migeatjg@gttaneo and Peri 2016, Cai
et al. 2016, Missirian and Schlenker 2017). Droughts are complex phenomena characterized by both
temperature and precipitation (McLeman 201R: Ilgeneral, the SPEI is known to correlate with
crop yields both at global (ViceB&rrano et al. 2012) and local saalgK{bik and Maurel 2016,
PefaGallardo et al. 2019). Prior research has successfully relied on drought indicatorthéncluding
SPEI, to measure the impact of weather shocks on migkéielte( et al. 201#Jastrorillo et al.
2016, Kubik and Maurel 2016). Of particular note, Missirian and Schlenker (2017) and Missirian
(2019) use measures of temperature and precipeatisto estimate migration to the EU, rather
than deviationdrom normal. We prefer the SPEI, whicla istandardized indicator of drought.
Particularly in crossational studies, it is important to consider long term averages and deviations
from it, rather than direct indicators, as some regions naturally experience hotenfitions
and/or greater normal variabilityln the Appendix we present the results @i alternative

specification of the modelsingtemperature and precipitation andesal

Empirical specification

To examine the effect of weatBbockson irregular migration to the EU, we estimate the

following equation:

8
J/ECN=REKI 8 .J/ECMaEU9ADRY,ELLEUA;EMQ=NE ;4
e
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The unit of analysis is the country of odggarquarter, indexed Iyt andq, respectivdlige
dependent variablbligratignis a logransformed quarterly measure of migration leVééather
represents the SPEI variableis a vector of country of origin fixed effect®arandquartgiare
vectors of year and quarter dummigéare robust errors clustered by counifp. account for
temporal correlation in migration flows, we control for pastdéweigration flows in the four prior
guarters Because the association between weather anomalies and migration may exhibit non
linearities, as well as delayed and temporal displacement effects (Carleton and Hsiang 2016, Hsiang
2016), we include in subsequent models a quadratic polynomi&RE Iveriable, as well as two
lag variables (Yearand YeaR). In fact, available datmgest significant variation in the duration of
travels to Europe. For instance, wiménysub Saharamigrantgequireup totwo years or more to
complete their tripgbout haldo so in less than 12 months (Crawley et al. 2016: 27, see also Ribot
et al. 2020: 46).

Following recent studies (Missirian and Schlenker 2017, Cattaneo and Peri 2016), we do not
include control variables.q..GDP per capitagonflict fataliti€s as we are interested in measuring
the total effect of weather variability on unauthorized migration. Weather is exogenous to social
processes such as economic production or armed conflict, and so, omitted variable bias should not be
a concern. Rathéactors such as economic growth may be conceived of as mediators through which
weather may affect migration, and inclusion of these variables directly would lead to biased estimates

'HOO HW DO +VLDQJ D Qebalz0i4) SatehyandH2ndROROLS)O WQile

a full mediation analysis is beyond the scope of this paper, we leave the question of such effects for
future research.

Becausee include layf thedependent variable in tagtimate@quationye have examined
the stationarity of the dependent variable using thelliex@hu panel unitoot test with panel

specific means terms and cresgional means removed (Levin et al. 2002). The number of lags in

14



the panel ADF regressions is selduasedn the AICfrom a maximum of 8 lags determined using
the Schwert criterion (1989). The results lead us to reject the null of hypothesis of unit root (adjusted
T =-3.63, pvalue < 0.001)

The sample for the main set of analyses comprises 1,536\y@aqtrgrter observations
extending over the period 262015. To prevent countries from which few mig@rmgsateto
influence the results, we restrict the sample to countries, which haveisehative total at least
100 irregular migrants to tBeropean Uniomover theentireperiod for which we have access to
Frontex dat200922017). By systematically controlling past migration flows and restricting the
sample to only majgpurcecountries, we take a conservative appro&ehexcludelsoestimates
of irregular migration flows for Palestine and Western Sahara, as it is likely that a substantial number
of migrants from these two regions may have originated from the MaitlerEast and North
Africa, instead of the territory encompassed by the present borders of Israel/Palestine and Morocco.
In total, the sample is made of 64 countries, comprising 38 countries located on the African continent,

20 in Asia, 4 in Eastern Bpe and 2 in the Americas.

4 Results

[Table 1 about here]
Table 1 presents the results of the primary set of empirical analyses. Model 1 is a baseline country
year fixeeeffects specification with quarter dummies and a single, contemporaneous SREI term.
shown by the positive coefficient, wetter than normal conditions in a given country increase the
number of irregular migrants detected. By contrast, the results suggest that adverse shocks, such as
drought, may potentially redungration In substantive terms, we note that the effect of a severe

drought (SPEI.5) on irregular migration is moderate, resulting in a decrease of about 14% in the

15



number of migrants detected [95%-20.0%,7.9%] Conversely, a large positive weather shock
increases migration by about 16% [95% CI: + 8.5%, +25[@&predictions (on the log scale) are
exponentiated to obtain a measure of relative change in migration levels.

Next,Model 2 replicates Modebiitincludesa quadratic term for weather shocks, to account
for the possibility that theessociation with irregular migrati®nonlinear.In general, theesult of
the quadratic specificatismggest that the associatioreryclose to lineawith droughts caumgy a
decrease in migration, while water surpluses are associated with more rmgfatiprhe AIC
suggests that Models 1 and 2 are essentially indistinguishable (Burnham and Anderson 2004, Raftery
1995). Results of at€st (not shown) leads tlle same conclusiorkigure A.3 in théppendix
depicts the relative change in the size of irregular migration flows for various levels of weather shocks,
based on thmore flexible specificatioh Model 2.In general ltese resultsf the first twomodels
areVXJIJHVWLYH RI D "PLJUDWLRQ DV LQYHVWPHQWU QDUUDWL)
the disposable income of individuals and households and help them overcome financial barriers to
emigrate.

Models 3 and 4 replicate frevious analyses adding lags for the SPEI values in the two
previous years. In general, neither model reveals evidence for lagged or temporal displacement effects
of water deficits or surpluses on migratidhe results of a-test(not shown carried at on the
lagged SPEI variablesboth models 3 and 4 fails to rejects the null of hypothesis that the lagged
terms are jointly zerdzigure A.4 in the Appendix depicts the relative change in irregular migration
as a result of weather shocks at various timescales (Year @jobésad on the estimates of the
more flexible Model 4.

To better assess the extent to which the inclo$idme SPEI variable improves on the
predictive ability of the model and to guard against overfitting (Cranmer and Desmarais 2017), we

carried>-fold out-of-sample crosgalidationswvith the stata crossfold package (Daniels.2Fi2)
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each model, wepot the root of the average mean square €ws O A §-§ A310 f andcompare

it to the same metric for a null modelvithout theSPEIlvariables The results suggest that care
should be taken when drawing conclusions about the association between weather shocks and
irregular migration as the estimateeragerossvalidated error never outperfotine null model.
Overall, the evidendeesnot sypport Hypothesis H1, that migration increases as a result of drought
conditions. To the contrary, they provide tentative support for hypothesis H2, which predicts that
droughts have a dampening effect on migration.

We note thathe number ofinauthorizednigrants detected in the previous quarter correlates
with future detections. The presence of temporal correlation is likely indicative of two distinct
dynamics. First, such an effect is probably related to the establishment of migraggiind sm
networks, which facilitate future movement. Second, the presence of temporal correlation could also
reflect stronger monitoring by border agencies, following a period of increasing migration flows along
a given routelnterestingly, we find weakbut significant, evidence for a temporal correlation with
the level of migration two quarters earl\thile it is hard to speculate on the reason for such a
correlation, it could reflect differences in the speed of adjustments of migrant networks and
monitoring by border agencies to an increase in unauthorized midfatadly. there arestrong
seasonal patteritsthe data The number of irregular migrants detected in the secondJ(A&)l
and third (Jukpeptember) quarters are more than twice as high as in the first quarteM@arm)ary

In the fourth quarter (Octob&ecember), the numbers are still about 75%rdricger.

Could the association between weather shocks and irregular migration be stronger in countries which €
dependency on the agricultur@laettoa® more reliant on agriculture are widely held to be more
exposed to the adrse consequences of climate change (Maetll#012). Thus, Table 2 presents

the results of the analyses, when westimate Models?2, but split the sample into two equal groups
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of observations: those wha&&lOshare of labor employed in thei@adtural sector is abotee
median, and those for which ibedow or equal tthe mediari47.2%) (World Bank 201%e refer
WR WKHVH WZR JURXSV-DJYU DOULLLDQUWE QIECRGh&H @ F/Qof labor
employed in agriculture is a high threshold value. It results from the fact that countries, which have
sent a cumulative total of at least 100 irregular migrants tend to be more agrarian than those who did
not. Inthe Appedix, we show the results of specifications, which include all the countries irrespective
of the number of irregular migrants and use the global median share of agricultural labor instead (31.6
%).

Essentially, we are testing for a conditional effestéotain if different sets of countries in
our sample respond differently to climatic variations. We note, however, that parsing the sample into
agrarian and nesgrarian countries assumes that any differences primarily occur through the
agricultural pragction channelWhile we believe there are good theoretical reasons to make this
assumption, this set of countries could also exhibit other common characteristics such as poverty and
geographic region. In the Appendix, we divide the sample by GDHAtpeascagll as Africa/nen
Africa and note that there is considerable overlap between these categories. Ultimately, it is beyond
the scope of this paper to ascertain if agricultural dependence is the primary channel through which
results diverge and wevieghis issue for future research.

In total, the sample of agriculturally reliant countries contains 32 countries, which are
disproportionally located in Africa (24) (all of which located i8&Baban Africa, except Sudan).
The rest is made of countries located in Asia (7), and in the AmerBas¢h)rast, the sample of
countries less reliant on agriculture is made of 32 countries, 14 in Africa, 13 in Asia, 4 in Eastern
Europe, and 1 in the Americ&ecause Model$8did not reveal any evidence for a delayed impact

of the SPEI on migration, we do not replicate the analysis for these two models. Interest readers may
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consult theAppendix which displays the full results of the split sample analysis including for
speciftations with lagged SPEI variables.
[Table 2 about here]

The results of Table 2 indicate that the drought effects repartiegre primarily driven by
agrarian countriesThe estimates of Model 5 suggestahdrought in an agrarian country reduces
the number of migrants by abifo on average [95% CR0.2%, 210.0%] (20.5 SPEI). Conversely,
unusually wet conditions in the same country would on average increase migratio®¥%y]ab6eut 2
Cl: +11.0%, +43.3%] (+0.5 SPEI) By contrast, Model 6 suggests that the effeatsather shocks
of similar amplitudes nontagrarian countri@se more than twice as sga@sultingor instancen
a decrease in the number of irregular migrdagi@bout 8%[95% CI:215.0%,20.6%]for a severe
drought As before, the results of the quadratic specification suggest that the association between the
SPEI and irregular migration is close to liggeaalsoFigure A.5 in the Appendwhich depictthe
relative change in the level of observed irregular migration based on the specifications f Models 7
8).

To assess whether the difference between the coefficients for the SPEI are statistically

significant, we restimated Models 5 and 6 in a seemingly unrelated regression. The ré<ults of a

test suggests that the two coefficients are effectively (istwdc19 p-value = 0.041)Nevertheless,
this result should be approached cautiously, since the test assumes that the two estimates are
statistically independénitioreover, crosgalidation indicate that the predictive performance of these
models des not improve compared thdlrmodels of each sample.

All in all, the empirical analysis provides evidence in support of Hypothesis 3 with the results

showing a stronger association between the SPEI and migration in agrarian bothmgiegard,

2 Alternatively, we have alseestimated this model using an interaction term between the agrarian dummy and the SPEI
variable. While suggestive, the results call for caution when it comes to the moderating influence of agriculture reliance fo
labor (ineraction term = 0.227, s.e. = 0.13{aipe=0.088).
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our results diverge from previous findings, which have suggested that agrarian countries face an
increased risk of migration as a result of higher temperatures (Marchiori et al. 2012, Cai et al. 2016).
In general, our results do not supgbe view that dry weather conditions cause more people to
migrate internationally. To the contrary, drought can potentially dampen migration from agriculturally

reliant countries, presumably by heightening existing financial barriers (Bazzi 2017).

Coul it be that particularly severe droughts might still induce people to leave afloighxantiren usual rates
this question, we replicate the previous split sample analyses, but replace the previous specifications
with dummies for severe weather kKhocWe operationalize severe weather shocks as weather
anomalies with SPEI values equal to or below'tipeddentile (severe drought), or equal to or above

the 90' percentile (excess rainfall) of the distribution. We present the results of tHese faide

3. Weagairfind no evidence that particularly severe droughts force people to leave theirloountry.

fact asevere drought in an agriculturddipendent country of origin results in an immediate decrease

in the number ofinautheized migrantsby about27% on averad®5% CI: 243.8%,4.8%. The

same model provides evidence that periods of unusually heavy rainfall increase the number of irregular
migrants by about 45% on averf@®o Cl: +8.5%, +94.8%]suggesting thatatural disasters
associated with these events could influence migratioitatasgh anecdotal, we note that our

data capture the devastating floods that occimrdédory Coast in 201@s wells the 2013
Afghanistan/Pakistan flootending credence tioe claim that extreme values of the SPEI are related

to flood damag@FRC 201Q Reuters 2013)While we do not find that drought influences migration

in nonagrarian countries, excess levels of rantehsenigration by about 17% on avergio

Cl: +1.4%, +34.3%Model 10).
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[Table 3 about here]

While we have presented empirical evidence that drought may depress irregular migration
from agrarian countries, there may be concerns that our findings may be driven by the
operationalization of éhdependent and independent vasabkechoice of estimator atitecriteria
used for inclusion in the sampl@ assess the sensitivity of the findings to alternative specifications,
we conduca number ofobustness checKsr(the full resultsee thé\ppendiy.

First, while our theoretical argument assagrculture to béhe primary channel linking
weather shocks to migration, the operationalization of the SPEI does not specificallfheonsider
cropgrowing season. Hence, neplace the main SPEI variable with an alternate measure generated
using only SPEI monthly valwhsing the crojgrowing seasof81) Second, we +estimate the
PRGHOV XVLQJ D UDWH YDULDEOH WKH QRddreEs dohcé&hsIJUD QW
that our results may be driven by primarily large co8&je3hird, we assess the #enty of our
resultdo an alternate estimator, a giassson (SilvandTeynero 2006, 201(83). This is because
about 7.6% of the observatiamshe samplescord zero migratiohus, dding unity before taking
lagsrisksintroducing bias ithe estimatecoefficient.

In thefourth and fifthrounds, we examine whether the temporal resolutainadiich the
SPEI variable isperationalizedhay have influendeour results.To do so wefirst replicate the
analysis using a SPEI measareputedat the quarterly level (insteac d2monthmeasure(S4)

We therreplicateagairthe analysitis timeaggregating the migratibmwsto the annual levéb5)

Sixth, we extend tlsample to include all sending countries in the analysis, and not just those countries
that sent @umulative total of d&ast 100 migrants over the period 22087 to address concerns

that the findings may be influenced by selection biaS¢8éhthendogeneity is a concern inasmuch

as it is possible that the inclusion of lagged dependent variables may have affected the estimated SPEI

parameters.To address, this concene replicate the analysis, mmovethe lagged migration
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variablegS7). Eighth,by weighting the SPEI by population, the results could potentially be driven
by the effects of shocks in urban areas, instead of rural Enegswe replace the population
weighted SPEI measure by a simple average of the SPEI adevasotiyeof a statéS8) Ninth,

we examine whether alternative measures of weather shoalsmilarpatterns To do sowe

replace the SPEI indicator with measures of precipitation and temperature anomalies frem the long
term norm(19702016)S9)

Next, we evaluate how the resudte affectedwhen using GDP per capit&10)or
geographical location (Afmoeontinent(S1L) to split the sample rather than agricultural dependence
Finally, in the last two rounagg replace the dependent variable with an altermatsien which
includesnigration flows fronthe Balkans migration routés12), and use an estimator, wadttst
standarderrorsfor spatial correlatiofHsiang 2010) (81 To better convey the results of the
sensitivity analgsi Figures324 summarize the results thie nine firstrounds by displaying the
predicted change in migration caused by an increase/decrease of one standard deviation from zero on
the SPEI scaleased on thepecificationsef Modell and Model$ %6 (for the results dhe last four
robustness checksee thappendix).

[Figure3 about here]
[Figured4 about here]

In generh the results of the sensitivity analysis add confidence to our conclusion that the
incidence of drought does not raise the level of irregular migration detected at EU external borders.
If anything, the results provide additional support of the opposit@asspparticularly in agrarian
countries: drought dampens the level of observed irregular migration. Therefore, we conclude that
while drought may either decrease, or have no effect on international migration to the EU, it does not
increasé Finaly, the sensitivity analysis provides additional evidence thatthaetisual

conditions in countries reliant on agricultoag possiblsaise the level of irregular migration, and to
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a lesser extent for countries less reliant on agricuiterestngly, while the results for precipitation
anomalies reflect those of the SPEI, we note that our results tentatively suggest that higher than
normal temperature in agrarian counteesdincrease emigratiomn the Appendix we provide a

discussion of theesults othe sensitivity analysis.

5. Conclusion

In this paper, we have examined the association between weather variability and irregular migration
to the EU over the period 202015. To do so, we have relied~oontex data omnauthorized
migration flowsand a measure of soil moisture (the SRIBIgh is explicitly designed to capture
departures from normal weather conditidisese new data sources add to the debate about climate
and migration by providing different metrics to assess the relati@harigll, we can draw several
conclusions. Ft, in line with others (Findley 1994, BaWishra and Massey 2011, Bazzy,2017
Riosmenat al2018, we find no evidence tliabught is associated witloremigrationIf anything,
the incidence of a drougbkntativelyeduceshe immediate level of observed migration in countries,
which are predominantly reliant on the agriculture sector.

Second, our findings also provide support for a perspective which sees international migration
as an investment. Adverse weather consliti@y increase financial barriers to migration, particularly
in poor and agriculturaligliant countries (see also Cattaneo et Peri 2016). By contrashametter
usual conditions are likely to lead to higher migration by increasing resourceseadanabla to
households. Finally, our findings agree with recent studies, which suggest that sudden onset weather
events, i.e., heavy rainfall, may be more strongly associated with migration, than gradual climate change

processes, such as rising tenyperand droughts (Koubi et al. 201
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Clearly, more research is warranted into the relationship between weather shocks, climate
change, and migration. By using data on apprehensions, we provide additional empirical evidence to
the debate.Border apprehensions are not a perfect indicator of emigration rates, but it offers
advantages over other measures, such as legal migration or asylum applications. We believe that the
accumulation of evidence from alternative data choices, units &f, amalysstimation techniques,

will provide a more complete picture regarding the effect of climatic variables on migration.
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Tabld: Main Models

Model 1 Model 2 Model 3 Model 4
N Migr, In (Q1) 0.549** 0.548** 0.548** 0.547**
(0.04) (0.04) (0.04) (0.04)
N Migr, In (Q2) -0.006 -0.007 -0.005 -0.006
(0.04) (0.04) (0.04) (0.04)
N Migr, In (Q3) 0.106** 0.106** 0.109** 0.109**
(0.03) (0.03) (0.03) (0.03)
N Migr,In (Q-4) 0.028 0.029 0.032 0.032
(0.03) (0.03) (0.03) (0.03)
SPEI (YO0) 0.304** 0.306** 0.279** 0.280**
(0.07) (0.07) (0.07) (0.07)
SPEF(YO0) 0.053 0.060
(0.08) (0.09)
SPEI (¥1) -0.136 -0.135
(0.09) (0.09)
SPEP(Y-1) 0.034
(0.12)
SPEI (¥2) 0.003 0.005
(0.09) (0.09)
SPEF(Y-2) 0.020
(0.13)
2nd quarter 0.840** 0.839** (0.838** (0.838**
(0.08) (0.08) (0.08) (0.08)
3d quarter 0.815** 0.815** 0.813** 0.813**
(0.07) (0.07) (0.07) (0.07)
4th quarter 0.578* 0.577** 0.577** 0.577**
(0.07) (0.07) (0.07) (0.07)
Constant 0.581** 0.573** 0.553** 0.536**
(0.11) (0.12) (0.11) (0.12)
Cntr FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
AIC 3919.706 3921.428 3920.362 3925.957
Joint F test (SPEI 18.52** 12.06** 6.90** 4.73**
CV rmse 1.279 1.285 1.260 1.267
N 1536 1536 1536 1536
N Countries 64 64 64 64

Std. errors clustered by country. CV rmsd.282 model:
+ p<0.10, * p<0.05, ** p<0.01
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Tabl@: Split sample models

Model5 Model6 Model7 Model 8

High Agr. Low Agr. High Agr. Low Agri

SPEI (YO0) 0.464** 0.169* 0.467** 0.171*
(0.12) (0.08) (0.12) (0.07)
SPEF(YO0) 0.067 0.045
(0.11) (0.112)
Cntr FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Quarter dummies Yes Yes Yes Yes
Lag migration variables Yes Yes Yes Yes
AlC 2025.083 1895.390 2026.869 1897.286
Joint F test (SPEI 13.81** 4.85* 8.48** 3.17+
CV rmse 1.478 1.112 1.487 1.115
N 768 768 768 768
N Countries 32 32 32 32
Std. errors clustered by country. CV rmse @1V (agdmigsrisample) afd(h@ragrariar
sample).

+p<0.10, * p<0.05, ** p<0.01
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Tabl&: Large Weather Shocks

Model 9 Model 10
High Agr. Low Agr.

Drought (YO0) -0.312* -0.063
(0.13) (0.12)
Ex. rainfall (YO) 0.375* 0.155*
(0.14) (0.07)
Cntr FE Yes Yes
Year FE Yes Yes
Quarter dummies Yes Yes
Lag migration variables Yes Yes
AIC 2030.101 1898.267
Joint F test 6.44** 2.91+
CVrmse 1.460 1.102
N 768 768
N Countries 32 32

Std. errors clustered by country.
andL.092(noragrarian sample)
+ p<0.10, * p<0.05, ** p<0.01
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Figurd: Monthly irreguiaigration flow to the EU 2018)

The solid line displays the total number of migrants on a log scale, while the dashed line indicates the monthlygramtgyesfof mi
which the nationality is not specified in the Frontex data. Theegchydes th&/estern Balkan rantetheCircularoute from Albania
to Gree(as well as the residual migration roNt&} the log scale on the y axis.
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Figur@: Number of irregular migral@s2@)

The plot is basesh Frontex data on the detection of irregular migrants betweendrostngoints butexclude estimates from testern Balkatand theCircular Route from
Albania to Greexewell as the residogrationroute. Countries depicted in in grey are EU member states, as well as-&sumigta countri€ountries depicted in white are
non-EU Balkan countries, as well as Ireland the United Kingdom, which are nohpaBchehgen area. The map uses a Robison projection.
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Figur@: Results of the senaitiaiygis (Mobel

The plotdepictsfor each set of robustness clsdhk predicted change in average irregular migratem iferease/decrease of one
standard deviation change on the SPEI scai8gqStespectively for temperature and precipitatmnadies & (based orthe
estimates dflodell). The bars depict the 95% confidence interval.
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Figurd: Results of the sensitivity analysts’§Models
The plotdepictsfor each set of robustness clsthk predicted change in average irregular migration for an increase/decrease of one

standard deviation change on the SPEI (#88), respectively for temperature and precipitation anon®Jidséggregated by
agrarian versus nagrarian countries (basediua estimates dflodelss 26). The barslepictthe 95% confidence interval.
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Climate Variability and Irregular Migration to the European Union
Appendix

Fabien Cottierand Idean Salehyan

In the appendix, whrst providein Section A.ldditional information on the data on irregular
migration flowgprovided by FronteXNextin Section A.2wepresensummary statistics based on
Table 1 in the main te8ection A.3 presents the full results of TaBe&m2he main texEinally,

Section Al provides the results tife sensitivity analys
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A.1Frontex data on irregular migration flows

The Frontex data is available in a monthly format, starting in 2009. The data measures the
number of irregular migrargpprehendedt EU external borders. The counts are disaggregated by
country of origin andhigration rowt (and further divided by land and sea bsdeere applicable).

There are eight migration routes in td&stern Africa, Western Mediterranean, CentradrMediterrane
Eastern Mediterran@maular route from Albania to, Gfesteen BalkaBmck Sea Roaiel Eastern

Land Bordeess well asrasidual migration route, but it registers less than 50 irregular migrants over
the whole period up to the end of 2(B&cause dadrisk of double countingrigrants, which may

have been apprehendadfirst timewhile transiting orthe Eastern Mediteraameute before
continuing the journey towards Western Eutbpmugh the Balkanwe excludehe two Balkan

migration routeffom the sampleas well as the residual migration ro\teaconsequenceve also
removeBalkan countries from the samjilesection A.4Tables A.3739) we show the results of

models including data from these two rolftesything, the results are in substance similar to those

presented in the main text.

Figure Al plots themonthlyrate ofdetection ofirregular migrants for theight largest
sending countries in the sample (Syria, Afghanistan, Iraq, EritreaRdigetan, Somalia, Tunisia)
between 2010 and 20AS the data reveal, the F D O20b®ligration Crisisvas driven bysteep
increasen the detection of irregular migrants in just about three countriesAghanistarand

Iraqg.

Finally, Table A.1 provisieor each country in the sample the aggregate number of irregular
migrants detected at the EU external boroees the period 20B2015, corresponding to the
timeframe of the empirical analyaleng with the number of migrants, for which the natioisality

unknown) The tableexcluds data fromthe migration routegoingthrough theBalkars.



Figure A: Monthly number of irregular migrants for the 8 largest €20HFRPEBENNtries

Theplotis based oRrontexdataon the detection of irregular migrants between bordssing pointaggregated across all migr:
routes, except th&'estern BalkRout@nd theCirculaRoute from Albania to &e=ewell as the rasad migration routdote the lo
scale on the y axis.



Table AL: Number of irregular migrants by sendmgalingBalkantri¢z01022015

Nationality N

Syria 610,072
Afghanistan 293,448
Iraq 101,633
Eritrea 90,764
Pakistan 54,489
Nigeria 42,324
Somalia 41,933
Tunisia 36,229
Iran 26,185
Bangladesh 25,248
Algeria 25,067
Morocco 23,770
Mali 22,565
Palestine 22,104
Gambia 21,415
Egypt 15,184
Sudan 14,752
Senegal 13,546
Ghana 11,254
Cote d'lvoire 10,060
Guinea 9,406
Cameroon 5,772
Central African Republic 5,477
Congo, Rep 4,315
Ethiopia 4,266
Lebanon 2,661
Burkina Faso 2,491
Chad 2,345
Georgia 2,338
Libya 1,669
India 1,666
GuineaBissau 1,620
Turkey 1,504
Myanmar (Burma) 1,228
Congo, DRC 1,217
Vietham 1,147
Moldova 1,117
Sierra Leone 1,110
Dominican Republic 1,083
Comoros 1,042
Togo 995
Sri Lanka 950

Nationality N
Ukraine 795
Russia 744
Benin 700
Niger 664
Yemen 524
Mauritania 517
Nepal 502
Liberia 455
Uganda 404
China 400
Dominica 366
Rwanda 304
Gabon 254
Kenya 181
Armenia 160
Belarus 149
Jordan 145
Angola 139
Mongolia 112
Tanzania 111
Equatorial Guinea 84
Kuwait 79
Laos 61
Zimbabwe 58
Malawi 48
Uzbekistan 47
Burundi 43
Haiti 40
Zambia 37
South Africa 35
Philippines 33
North Korea 32
Cuba 29
Saudi Arabia 27
Western Sahara 26
Madagascar 25
Kazakhstan 19
Tajikistan 19
Mauritius 18
Colombia 16
Azerbaijan 15
Kyrgyzstan 15



Nationality

Nationality N
Israel 12
South Sudan 12
Jamaica 11
Turkmenistan 11
Ecuador

Indonesia

Djibouti

Malaysia

Bhutan

United States
Bolivia
Botswana
Brazil
Namibia
Oman
Panama
Peru

Cape Verde
Maldives
Mozambique
South Korea
Thailand

United AralEmirates

Venezuela
Belize
Cambodia
Canada
Kiribati
Lesotho
Mexico

Papua New Guinea

Taiwan

Antigua & Barbuda

Argentina
Australia
Bahamas
Bahrain
Barbados
Brunei
Chile
Costa Rica
El Salvador
Eswatini
Fiji

O OO O OO0 O0OO0COO0OOFPPFPPFPPFPPFPPEPPEPPEPDNDNDNDNDNDNDNDNDNDNWWWWWWWPEAEPMSMOOODOO©O

Grenada

Grenada
Guatemala
Guatemala
Guyana

Guyana

Honduras
Honduras

Japan

Japan

Marshall Islands
Marshall Islands
Micronesia
Micronesia

Palau

Singapore
Solomon Islands
St. Kitts &Nevis
St. Lucia

St. Vincent & Grenadines
Suriname
Timor-Leste
Tonga

Trinidad & Tobago
Tuvalu

Uruguay

Vanuatu
Nationality not specified

OO0 0000000000000 0OO0O00O0OO0OO0OOOoOOoO O ol

49,344

Total

1,615366



A.2. Summary statistics

Table A2 preserga summary statistics of the main variables includedamghiecabnalysis,
as well as a number of additional varidtdesthe sensitivity analysiShesummarystatistics are
based on the samplETablel. Table A3then reports the correlation matrix betweepdipelation
weightedSPEI variable ants two immediatdagsandFigure A.2 shows a density plot of the SPEI
variableboth based again on the sampldéle 1

Table A2: Summary statistiCRabld sample

Obs Mean Std. deviation Min Max
N Migr 1536 1004.69 9407.456 0 229987
N Migr per 160nhabitan(S2) 1520 6.06 55.7@ 0 1635.512
SPEI, pop weighted 1536 -0.036 0.389 -1.460 1.437
SPEI, pop weighted, growin¢sdgason 1536 -0.045 0.426 -2.474 1.437
SPEI, pop weighted, quésterly 1536 -0.0® 0.650 -2.98B 2.054
SPEI| no weidl¥) 1536 -0.0® 0.3% -1.518 1433
Temp anoma(&% 1536 0.073 0.697 -2.699 2.215
Precipnomali€sS9) 1536 -0.069 0.92 -3.663 2.7%

Table A3: Correlation matrix SPETabld sample

SPEI (Y0) SPEI (¥1) SPEI (¥2)
SPEI (Y0) 1
SPEI (¥1) 0.229 1
SPEI (¥2) 0.289 0.265 1



Figure A: Density plot SPEITabld sample



A.3 Additional analyses and omplete results of Table 223.

Tables A and A5 present the full results of Tables 2 and 3 in the main text, including
additionakpecificatiostesting for an association between lag SPEI variable$ @nelyeaR)

and irregular migration.

Table AL Full results glitsample modiEdble 2, main models)

Model 5 Model 6 Model 7 Model 8 Model 9 Model 1C Model 11 Model 12

High Agr. Low Agr. High Agr. Low Agri High Agr. Low Agr. High Agr. Low Agri
N Migr, In (Q1) 0.524** 0.564** 0.524** 0.564* 0.525** 0.562** 0.524** 0.561**
(0.05) (0.05) (0.05) (0.05) (0.05) (0.06) (0.05) (0.05)
N Migr, In (Q2) -0.062 0.069+ -0.063 0.069+ -0.060 0.070+ -0.062 0.071+
(0.05) (0.04) (0.05) (0.04) (0.05) (0.04) (0.05) (0.04)
N Migr, In (@3) 0.137** 0.061 0.136** 0.061 0.140** 0.063 0.140** 0.064
(0.03) (0.05) (0.03) (0.05) (0.04) (0.05) (0.04) (0.05)
N Migr, In (Q4) 0.008 0.050 0.008 0.050 0.012 0.052 0.012 0.053
(0.03) (0.06) (0.03) (0.06) (0.04) (0.06) (0.04) (0.06)
SPEI (YO0) 0.464**  0.169* 0.467** 0.171* 0.429** 0.158+ 0.421* 0.150+
(0.12) (0.08) (0.12) (0.07) (0.13) (0.08) (0.14) (0.08)
SPEF(YO0) 0.067 0.045 0.086 0.030
(0.11) (0.11) (0.13) (0.11)
SPEI (¥1) -0.159 -0.076 -0.171 -0.074
(0.16) (0.08) (0.16) (0.09)
SPEF(Y-1) 0.049 -0.012
(0.23) (0.10)
SPEI (¥2) -0.024 0.042 -0.041 0.038
(0.09) (0.15) (0.09) (0.15)
SPEFP(Y-2) 0.183 -0.128
(0.18) (0.20)
2nd quarter 0.861* 0.824** 0.861** 0.823** 0.860** 0.823** (0.861** (0.822**
(0.11) (0.112) (0.11) (0.11) (0.11) (0.112) (0.112) (0.11)
3d quarter 0.796** 0.845** 0.796** 0.844* 0.791** 0.845* (0.792** (0.844**
(0.09) (0.11) (0.09) (0.11) (0.10) (0.11) (0.10) (0.11)
4th quarter 0.654* 0.501* 0.654** 0.502** 0.650** 0.503** 0.650** 0.500**
(0.08) (0.11) (0.08) (0.11) (0.08) (0.11) (0.09) (0.11)
Constant 0.719*  0.425* 0.714** 0.414+ 0.672** 0.415* 0.647** 0.440*
(0.13) (0.20) (0.14) (0.20) (0.13) (0.20) (0.14) (0.21)
Cntr FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
AlIC 2025.083 1895.39C 2026.869 1897.286 2027.236 1898.461 2031.841 1903.259
Joint F test (SPEI 13.81** 4 .85* 8.48** 3.17+ 4.70** 2.54+ 4.75%* 1.65
CV rmse 1.478 1.112 1.487 1.115 1.438 1.098 1.463 1.104
N 768 768 768 768 768 768 768 768
N Countries 32 32 32 32 32 32 32 32

Std. errors clustered by country. CV rmse rBill7(aogaitari sample) afa (hOragrarian sample).

+ p<0.10, * p<0.05, ** p<0.01



Table /: Full results split sample models (Table 3, main models)

Model 13 Model 14 Model 15 Model 1€

High Agr. Low Agr. High Agr. Low Agr.

N Migr, In (Q1)  0.532** 0567 0.527* 0.564*
(0.05)  (0.05) (0.05)  (0.05)
N Migr, In (Q2)  -0.060 0.069+ -0.063  0.078*
(0.05)  (0.04) (0.05)  (0.04)
N Migr, In (33)  0.131* 0.061 0.138*  0.063
(0.04)  (0.05) (0.04)  (0.05)
N Migr, In (34)  0.008  0.049  0.009  0.042
(0.04)  (0.06) (0.04)  (0.06)

Drought (YO0) -0.312*  -0.063 -0.267+ -0.103
(0.13) (0.12) (0.14) (0.12)

Drought (Y¥-1) 0.230 -0.130
(0.16) (0.11)

Drought (¥-2) 0.068 -0.246

(0.13)  (0.15)
Ex. rainfall (YO) ~ 0.375*  0.155* 0.366* 0.116*
(0.14)  (0.07) (0.14)  (0.05)

Ex. rainfall (Y1) -0.055 -0.110
(0.13) (0.10)
Ex. rainfall (¥2) 0.134 -0.140
(0.12) (0.15)
2nd quarter 0.872** 0.825** 0.867** 0.824**
(0.11) (0.12) (0.11) (0.11)
3d quarter 0.799** 0.836* 0.800** 0.846**
(0.09) (0.11) (0.10) (0.11)
4th quarter 0.653**  0.492** 0.655** 0.502**
(0.08) (0.11) (0.09) (0.112)
Constant 0.688** 0.405+ 0.655** 0.516*
(0.13) (0.20) (0.13) (0.19)
Cntr FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
AlIC 2030.101 1898.267 2034.026 1899.136
Joint F test (SPEI  6.44** 2.91+ 3.46** 184
CV rmse 1.460 1.102 1.470 1.111
N 768 768 768 768
N Countries 32 32 32 32

Std. errors clustered by country. CV rmselnsifl daogatitan sample)
andl.092(noragrarian sample)
+ p<0.10, * p<0.05, ** p<0.01



Figure /. Immediate effects of weather shocks on migration with 95% confidence interval (Mode
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Figure A: Immediate and lag effects of weather shocks on migration with 95% confjdence intervals
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Figure /A: Immediate effects of weather shocks on migration conditional on agriculture reliance with 9t
intervals (Models 7 and 8)
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A.4 Sensitivity analysis

To assess the sensitivity of the findings prelsarttee main text to alternative specifications,
we conducted thirteenth different sets of robustness checks. To do so, we reproduce each time the
full results of the analysis ($able 1 in the main text afidbles A.45 in Section A.3n discussing
the outcome of the sensitivity analysis, we mostlydiothies modelsvith asingldinear SPEI term
(Models 1 and Model$6. Nonetheless, for reasons of consistevewlso replicater each set of
robustness checlhie plots depicting theammediatdffects of adverse weather shocks based on
specifications includimgiadratiSPEI termgsee Figures Aahd A5). We discughese plotg the
textonly when the results models including quadratic tenrmarkedly diffefrom linear models
As a word of caution, it is important to note from the outset that none of the models shown here
indicate that including climate variables substantial impineveutof-sample prediive ability,
compared to a null model (see cr@dglated root mean squared errors at the bottom of each table).
Overall, this suggestsas we state in the papethat it is very well possible that climatic variables
may have no discernable effectsregular migration towards the European Union.

First, we replace tipgimarySPEI indicator with a measure of soil moisture generated using
information from the SPEI dataset during the growing sgapio do so, we draw on the PRIO
GRID (v 2.0), which provides information on the main crop harvested in a given area, along with
informationon the starting and ending months of the growing season (Tollefsen et.alTBe12)
data is provided at a ragtesolution of 0.5 degree. To computegtbeving se&d®g| we proceed
similarly as for the main SPEI variable, but restrict the aggregation process of the underlying monthly
SPEI cells to only the months corresponding to the growing season fointlepmaeachcell.
The correlation between the SPEI émgrowing seasoiants high ‘6= 0.89) over the period 2@
201% Tables A6 27 present the results of this alterspiecification (see aBigures A.87). In line
with the modelpresented in the main tetkteresults suggesiat droughts reduce irregular migration
to the EU, in particular for country highly reliant on the agricultural sector for labor, and for large

weather shocksRegarding neagrarian countries, the results are lesscatedout specificatisn

1The PRIGGRID data on crop harvested area and the start and end dates of the growing season is provided by the
MIRCA 2000 dataset (v 1.1.) (Portmann et al. ZBEOMIRCA 2000 dataset contains information on harvested area for

26 irrigated and rainfed crops and growing season across the globeratrauteanmesolution.

2 The intrapanel coefficients of correlation drop below 0.8 in only nine countries 4uh dh& sample for Model 1.

Among these, Ethiopia is the only major outlier with a coefficient of correlation between the SPEI and SPEI growing
season variables equal to 0.39.
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includinga quadratic SPEI term would suggest that wieéetusual conditions are associated with
higher migration (See Figig).

Second, we replicate the main analyses, but replace the dependent variable, measured in levels
by a rate variable, which meastiveannual number of irregular migrants detected at EU external
borders per 100,000 people in the country of §88¥ As for the primary dependent variable, this
alternative operationalization of the dependent variable is added to the nicdeféomed.

Tables A 211and Figures 82 in the Appendix present the results using this alternate specfification.

In general, the conclusions obtained in the main set of models are not altered by this new specification
although the estimated effects appear smaller in comparisoresuliteported in the main text
Weatheshocks in nomagrarian countries are not associated with irregular migvéliibrmregards

to extreme eventwe report tentative evidence consistent with the results of tlanatgsiéTable

A.ll).

Next, TablseA.12214and FigureA.1021 1 replicate the main sets of models but replace the
log-linearizatiof the modelith a (fixeeeffects) quastoisson(S3)Silva andeynerc2006, 201)1
We add this specificatidmgcause there may be concerngtibatesence of zeesin the dependent
variablewhich forcesisto add unity before taking the natural logarithsusceptible to introduce
bias in the estimatés.general, we note thhe number of observations with zero migration is low
in ourdata(about 7.6% fothe sample ofablel). Underthis specification, the dependent variable
is included directly in the estimated mad#tout takindogs Theresults reported tend to mirror
those reported in the main analyisn it comes to wateurpluses butiffer somewhatvith regards
to the effects ofirought Modelsincluding onlya linealSPEIterm are generally consistent with the
effects of drought reported in the main text. Howatter, the inclusion @ quadratic term, we
longer findevidence that the incidence of a drought immediately decreasagatian (Figure
A.10),in particuar forcountries highly reliant on agriculture (Figure A Eibally, the estimates of
models for extreme weather events are generally not consistent with the results reported in prior
models (Table ML Nonethelessthe estimatasadicatethat unusualljhigh water surplusés an

agrarian countmgorrelate with amcrease in the level of migration detected at EU borders

3The population data is provided by the World Development Indicators (Wik20BQ).

4We add unit prior to the log transformation.

58QGHU WKLYV VSHFLILFDWLRQ WKH VDPSOH LV UHGXFHG WR - REVHUY
years in Eritrea.

6 Compared to modegsesented in the main tgkte results of i ®test supports adding a quadratic term to thatiequ

estimated by a qudBbisson regression both for the sample pooling together agrarian-agcarian countries (Table

1 in the main text) and the sample of composed only of agrarian countries (Table 2 in the main text).
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The nextthreesets of specifications examine the sensitivithaongs in the temporal
resolution of the dat@ndin the samplesize First, we replicate the main analysis, bua 8&E|
measurdased on the average8nth SPEI in each quarterstead of taking the averagadhth
SPEI in the previous 12 mon#ding in the current quar(&d)Tables A.15%7, Figure A.12213)’
As expectedhe data suggests that the dampening effect of a drought on irregular migitzdiyn is
closeto zero and not statistically significéiot the contemporary quarterly measura) then
increases in magnituddatter quarterand becomes significgable A.5). Depending on the set
of countries considered, the effect peakiseirsecondjuarter (35 months after the initial shock
nontagrarian countrigsr the thirdquarter (88 months after the initial sho@grarian countries
(see Table A6). While it is difficult to speculate about the cause of this temligorapancy, we
note that agrarian countries in the sample are located on average at a distance from the European
Union twice as large comparison tmon-agrarian countries; thus requiring a longer jotimeey.
shed light on thaggregatannuatffectand compared them to those obtained in the t@ejrwe
have linearly combined the coefficients by calendarlyegeneral e estimates for thennualized
effects aref similar magnitude those reported in the ma@xt. For Model 1 (Table A.15)severe
drought (0.75 quarterl$PE) shockis predicted to damp@mnualmigration by abow0 %, while
unusually wet conditions)(75 quarter§PE) wouldincreasé by abouR4%.1° For thesplit sample
analysisthe correspondingredictecannuaimpacts for shocks of similar magnitacke28% and
+38% for agrarian countri€slodel 5,Table A.16and 2126 and 4% for non-agrarian countries
(Model 6, Table A.16)As regards the estimates ffovdels ofextreme eventsve find a similar
immediate drought dampening effects, when linearly combining all the coefficients for the first year
(Quarter @o Quarter 23), even though none of tigearterlycoefficients armdividudly statistically

significant(Table A.T). In substantive terms,s@veredrought reduces the number of migrants

7Compared to the main moslghis specification requires the inclusion of a large number of lag quarterly SPEI measures.
For the models examining only the immediate impact (over the same year) of the SPEI variable on irregular migration,
this involves one contemporary term (for $hene quarter) and three lagged quarterly SPEI measures (three prior
guarters). For the models examining the same association over the past two years, this requires the inclusion of no less
than twelves quarterly SPEI measures (four for each year).

8 The aerage distance from the EU for agrarian countries in the sample of Model 1 is 2,8@ekimati@td., 567 km),

respectively 1,645 km for ragrarian countries (stbbviation1,612 km).

9 We similarlylepict the total annual effectsted SPESing specifications with quadratic témisgures A.1213

10 Careful readers will note that the magnitude of the SPEI shocks used to predict migration do not match the magnitude
of the shocks reported in the main text (similarly, Figured A di#erwith regards the SPEI scale). This is the result of

the shorter temporal window at which the quarterly SPEI measure is aggregated compared to the main indicator (i.e., at
intervals of three months, instead of twelve). Thus, the quarterly SPEI exhibigsiatiames. However, the magnitude

of the SPEI events spans the same interval, i.e., approximately the range extending #frperdestil®to the 90

percentile of the variable.
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detected at EU external borders by ab&¥t 8verything else being edivaddel 13}* Conversely,
an excess level of rainfall incretis=s$otal annual level ofigration by abolit12 %. On the other
hand, we find little evidence under this specificationattggt weather shocksfect irregular
migration in noragrarian countries.

Secongdwe aggregate thegrationdata to the annual level, dropping the quarterly resolution
(S5) The sample is now reduced to 384 observations. In general, the results, presented in Tables
A.1820and Figures A4215arein linewith the results reported in the main analfss it comes
to the pookd analysis, but differ for the analysis separating agrarian fr@agraigan countries
Althoughthe point estimate of the SREIriabldor agrarian countries is of similar magnitude as the
one for noragrarian countriegie note thait is not statistically significargee Models %, Table
A.19) By contrastthe resultfor extreme eventgegenerallgonsistent with thogeported in the
main tex{Table A.23)

Third, in Tables 21223 and FigureA.16217, we report the results of models estimated using
the complete sample of countries of origin in the Frontex dataset, irrespective of whether these
countries serdg cumulative total @t least 100 migrants over the period ZI9 (S6) The new
sample cmprises 3,589 observations across 150 cotthissa result, the median share of labor
employed in the agricultural sector amounts to 3do@pared td7.2% in the sampier the main
set of model§ Under this specification, the estimatesmbiguously indicate that the incidence of
a drought results in an immediate decrease in the level of migrationZDabldi&.effect is driven
primarily by countries which are highly dependent on the agricultural sectorZ2alitedarding
extreme events, the results are similar to those reported in(Table 3\..3).

Because controlling for past migration levels in the four prior quarter manrbdveed
bias intheresults reportedve replicatén the nexrobustness chet¢ke mainanalysis bugxclude
the contrad for the migrationlevelsin the four prior quartefsom the estimated equati(®i7) The
results, presented Trables A.226 and Figures A82l9, are in substance very simitathose

reported in the main analysisly of larger magnitudfe.

11This effect is significant at the 90% confidence interval in Model 13, but not in Model 15.

12Extending the sample to include all countries results in the share of quarterly observations registering zero migrant rising
to 53.6%.

13]n this regard, vnotethatthe median valug labor employed in agricultwrged to split the sample in the main text

is high(47.2%). It results from the fact that countries, which have sent a cumulative total of at least 100 irregular migrants
tend to besignificantlynoreagrarian than those who did not.

14To ensure consistency between samples and enable the comparison of the results, we exclude observations for the year
2009 from the sample for this set of sensitivity analysidata for 2009 was previously excludeiibe of the inclusion
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While populationweighting ensures that sparsely populated or desertethaaedsss
influence on the computation of the cougmel SPEmeasure compared (aral)areas, where
population levels are substantially higher, it also hadvidrseonsequence thatban areaare
permitted to have a large influenGéven that we hypothesize that the effects of weather shocks are
channeled through the agricultural sector, this represents a potential threat to our drgument.
addition, it is possible that population may choose to strategically locate in aresdiembr r
climate shocksee HsiangndJina 2014: 15 fn 12)lencewe assess the sensitivity of the empirical
models to the operationalization rule of the SBkenerating an alternative measure taking a simple
averagef the annual SPEcrosscountries, instead of a population weighted meg@ureWNe
present the results in Tabte27 229 andFigures A20221 In general, we find little evidence that the
weighting scheme influerthefindingsof the main texteported in Tables2®. Episodes ofirought
correlate with a decrease in irregular migration to the European Thnigds notsurprisng given
that the correlation coefficient betweenpitygulation weighte8PEI and the simple average SPEI
is about @9, reflecting spatial a@riarce in weather patterfisased on the sample Tablel in the
main text) The onlynoticeablalifference is that the coefficient for extreme water surpluses in
agrarian countriésno longer statisticaliygnifican{Table A.29).

Next, we replace the main independent vari@Ble| with two variables measuramgnual
anomalies itemperature and precipitatig®9)> The results are presented in Table 83&nd
Figures 22224, To do so, & use data provided by the Climate ResearclCBUTS series 3.25).

We generate the anomalies data in the same way as for the SPEI data. We first take the average
precipitation/temperature over the current quarter and the previous nine months and then take a
populatioaweighted average over the entire courtoy each countrywe subtract the loAgrm

mean value from eagbarterljtemperature and precipitati@alization and standardize over 1970

. €0 7 BLE . . . . -
2016 penodMﬁ.17 To correct for trending in the variabheeasuring anomali@<.,due to
ou

climate change), we use thg/d@r moving average DgTable A30reproduces Table 1. We find

of lagged migration variables for the four prior quarters in the estimated equation. Replicating the models with the Frontex
data for 2009 does not substantively alter the results.

15Similarly, as for the main analysis, we estimmtet of a model on a sample extending from 2010 to 2015 to facilitate
comparisons, even though CRU 3.25 data extends until 2016. Extending the analysis to 2016, however, does not
appreciatively alter the results.

16The SPEI is based on tieenperatureral precipitatiomata from the Climate Research Ui series 3.25} should

be noted that the SPEI variable is highly correlated with precipitation an@malie$)( By contrast, it is only weakly
correlated with temperature anomalées €0.1Q (based on sample for Model 1, Table 1 in the main text).

17The data for the CRU T325extends until 2016.
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little evidence that temperature anomalies correlate generally with the detection of irregular migrants
at the EU external borderBy contrast, and consistent with the results reported in the main text, we
find that reduced levels of precipitation hasanapening effedn migration, and conversely for
higher than usual levels of precipitaisee also Figure28. When it comes to the analyses carried
out on subsample (Table A.3), precipitation deficits and surpluses are again associated with a
decrease, respectivahincrease, in migration in agrarian counsgesdlseigure A24). Regarding
temperature anomaliege find tentativeevidence that hightemperaturéhan usuais associated
with moreout-migration in countries highly reliant on the agricultural sector foskdatsgBigure
A23® The analysis of extreme events sugjgesimilar pictureThe coefficients fohigh
temperature and high levels of rairdedl bothstatistically significam agrarian countrieand
tentatively so for lower levels of rainfdkeTable A.32)° In light of theresults reported for the
SPEI and precipitation anomaltég,resultfor temperature anomalies in agrarian couctiede
considered puzzle. While it is hard to speculate about what lies behind this correlation, it is possible
that it may hint at aistinct pathway throughhich highetemperatureouldpotentially influence
migration rates, for instance througtam@nitymechanisniMarchiori et al. 2012: 356) through
a separate effectloéaton cropyields(Schlenker and Roberts 200

The two nextobustness checlexamine the appropriatene$spliting the samplento
groups of countries depending on their reliance on agriculture fofMaldar so, wdirst replicate
the split samples analyses (only TaMeandA.5), but this timave dividehe sample between rich
and poor countrig$10f° TablesA.33234 present the results of this specificatidbeit hinting at
possibly larger impact of weather shocks irepomuntries, the results of the areslgse very similar
in the two sample®roughtexerts a dampening effect on migration in both samples, and conversely
for periods ofurpluses in theater balanc@able A33,see als&igure A25. When it comes to
extreme eventte results amgainvery similar in both samplescept fothe coefficient for severe
droughs, which is only significant in the sample of poorer countdestall,we interpret these

evidence as suggestive ifidriought influencarregular migration to the European Uniors, éffect

18]t should be noted that the SPEI variable is highly correlated with precipitation anénalid3. By contrast, it is

only weakly correlatewith temperature anomalies= 20.08). At face values, this may indicate that the effect of
temperature on migration is distinct from the effedtafght and excess water balance

19|n a similar way as the models using the SPEI, we define extréme evesmts as precipitation and temperature
anomalies below or equal to thé gércentile, respectively above or equal to thpedfentiles.

20The median GDP per capita at purchase power parity value in the sample is 3,816 USD at constanio2@triddSD. C

below the median are classified as poor. In general, the correlation between the share of agriculture in total employment
and GDP per capita is moderaés=( 20055. The GDP data is provided by ihWerld Development Indicatofg/orld

Bank 2019).
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isprobablyratherchanneled by its impact on agricultprexiechereby the share of labor employed
in this sector

Wenextreplicate again tlamalysis bugplit the samplato two alternate groupsaguntries,
those located on the African continent, and tloasted elsewhene the world(S11) We do so
because thereaybeunobserved factors specific to African countries, whichbmibldeighterthe
impact of drought on societigsg.recurrence of armed conflja@hd facilitate migratioe.g. such
as established migration routagge diasporas in European couptriéemparedo the sample of
countries highly reliant on agriculture for labor (32 countries), the sample of Africa countries is made
of 38 countrieof which24are classifiedagrarian countries in Tablé3 @f the maimpaper The
results of this set of modelepresented in Tables A2636. In general, the results aszy similar
to those presented in TableB &f the main paper both the size and statistical significance of the
estimategseealsoFigure A26), despite the addition oft hdditional African countries and the
removal of eighton-Africancountries highly reliant on agriculturedbor. If anything, thé&SPEI
coefficientfor agrarian countrigs slightly larger thathe same coefficient ftne samplenade
exclusivelpf Africancountriegcompare the results Bfodel 1,Table 2 in the main text with the
results reported iModel 1,Table A35) Overall, wébelievehatthese resul@reindicative thathe
impact ofweather shocksn irregular migratiois probablyprimarily mediatethrough thempact
of these shocks on thgricultural sectolyet, as we note in the main text, we cannot rylbased
on the evidence presented htvatthe resultsve reporin the main texaredriven bysomeother
unobservedharacteristics of the sample speoifibe Africa continent

Furthermoretheremay be concerns that by excluding estimates from the iBajkaitnon
routes, this may have influenced our resiilterefore we replicate again the entire setsbimatd
models, but replace the dependent variablewiiternative operationalization, which inslasle
wellthe number of migrantom thepreviouslexcluded migration routd$ie WestrrBalkan Route
the CirculaRoute from Albani&tee@ndthe UHVLGXDO "2WKHWG12Plb &eDWE. RQ UR X
now runthe analysis oaslightly larger sample (694. This is becausee computehe list of
countries, which seatcumulative toral ofiore than 100 migraraser the period 2068017 based
on thesenewdata. Compared to the original sample, the new sample is composedwuitiies,

includingsix Balkans countrieg\lbania, Bosnia and Herzegoyvi@eatiaKosovo,Macedonia and
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Serbid' The results, which aie generasubstantivelgimilar if less precisely estimatathose
reported in the main text, are presented in Table&38.@7dFigures A.27228 Nevertheless, we
remain wary ofirawing any inference from thesga, due tdwo major limitations) the risk of
double countingnigrantgfor a discussion, see SectidroBthe main text@nd b)helargenumber

of migrants for whom nationalityusspecifiedbn the WestarBalkan Migratiétouten late 2015
Indeed including this route in the datignificantly increases the share of unspecified nationality, as
border agencies in Hungary, and elsewhere, essentiallyrstopp@atthe nationality of migrants

in late 201%he share of unspecified nationalitynigrantseaches 50% Movember 2015)

In a final set omodelswe correct the estimates of standard errors to account for potential
spatial correlation in the errors across p&&8 To dosqg weuse the procedure developed by
Hsiang (201Gsee also Conley 1999, 2@06&djust standartrorsfor spatial and serial correlation
in OLS. Standard errors are adjusted for spatial correlation between countries whose -population
weighted centrogdie within 1,000 kilometeo$ each others (together with lag lengthfof serial
autocorrelatiorff. The results of these specificatiare presented in Tables A4® and Figures
A.39230 In general, adjusting for spatialocorrelatiom the errors does not affect the conclusion
of the empirical analy$t¥.

21Croatia is only part of the sample until the end of the second quarter of 2013. After its admission to the European Union
on July #2013, it is removed from the sample. In addititimetBalkan countries, Cuba is now also part ofinels,

as it has s¢@a cumulative total of more than 100 migrants across all migratiooveuths period 2062017

22The lag of order 2 was chosen based on existing practices in the. liteedtect, it ibased on the fourth root of the

total number of periods (24) (see Greene 2018: 999). In line with the weighting scheme of the gridded SPEI data, we
compute populatieweighted centroids of countries, instead ofveegghted centroids.

23\We have considered different distance cutoffs (f00rkrth to 2,000 km), but these do not appear to have much effect

on the estimated standard errors.

24We do not show crosslidated RMSkh Tables A.4812, since these are by definition identical to those shown in
Tables 23 in the main text and Tables A&.4n the appendix.
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Table /6. Main Modefs SPEI growing season

Model 1 Model 2 Model 3 Model 4

N Migr, In (Q1)  0.552* 0.549%* 0.549** 0.546*
(0.04)  (0.04)  (0.04)  (0.04)
N Migr, In (Q2)  -0.004 -0.005 -0.002  -0.003
(0.04)  (0.04) (0.04)  (0.04)
N Migr, In (Q3)  0.109** 0.110%* 0.113** 0.113*
(0.03) (0.03) (0.03) (0.03)
N Migr, In (Q4)  0.027  0.029  0.031  0.032
(0.03)  (0.03)  (0.03)  (0.03)

SPEI (YO0) 0.250** 0.285** 0.225** 0.260**
(0.08) (0.06) (0.08) (0.07)
SPEF(YO0) 0.150** 0.147**
(0.05) (0.05)
SPEI (¥1) -0.165* -0.163*
(0.08) (0.08)
SPEP(Y-1) -0.010
(0.09)
SPEI (¥2) 0.014 0.021
(0.08) (0.07)
SPEF(Y-2) -0.006
(0.11)
2nd quarter 0.841** 0.840** 0.839** (0.837**
(0.08) (0.08) (0.08) (0.08)
3d quarter 0.817** 0.817** 0.813** 0.813**
(0.07) (0.07) (0.07) (0.07)
4th quarter 0.579** 0.580** 0.576** 0.577**
(0.07) (0.07) (0.07) (0.07)
Constant 0.556** 0.534** (0.531** (0.512**
(0.12) (0.12) (0.12) (0.12)
Cntr FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
AIC 3922.409 3919.558 3919.82¢ 3921.04¢€
Joint F test (SPEI 10.41** 13.83** 7.21** 7.33**
CV rmse 1.250 1.259 1.230 1.238
N 1536 1536 1536 1536
N Countries 64 64 64 64

Std errors clustereabiogry. CV rmse null model: 1.232
+ p<0.10, * p<0.05, ** p<0.01
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Table A7: Split sample mcde$El growing season

Model 5 Model 6 Model 7 Model 8 Model 9 Model 1C Model 11 Model 12

High Agr. Low Agr. High Agr. LowAgri High Agr. Low Agr. High Agr. Low Agri

NMigr, In (Q1) 0527 0568 0524 0561 00526 0564 0523 0.557*
(0.05)  (0.05) (0.05) (0.05) (0.05) (0.06) (0.05)  (0.05)
N Migr, In (Q2)  -0.059 0.072+ -0.060 0.069+ -0.056 0.073+ -0.057 0.071+
(0.05)  (0.04) (0.05) (0.04) (0.05) (0.04) (0.05)  (0.04)
N Migr, In (@3)  0.142*  0.062 0.142*  0.064 0.146** 0.065 0.146**  0.068
(0.03) (0.05) (0.03) (0.05) (0.04) (0.05) (0.04)  (0.05)
N Migr, In (34)  0.007  0.049 0008 0.053 0.012 0051 0.013  0.056
(0.04)  (0.06) (0.04) (0.06) (0.04) (0.06)  (0.04)  (0.06)

SPEI (YO0) 0.359* 0.133 0.404**  0.162+ 0.328* 0.117 0.368** 0.144
(0.13) (0.09) (0.10) (0.08) (0.14) (0.10) (0.10) (0.09)
SPEF(YO0) 0.142** 0.222 0.143** 0.196
(0.04) (0.15) (0.04) (0.13)
SPEI (¥1) -0.186 -0.104 -0.183 -0.119
(0.14) (0.09) (0.12) (0.09)
SPEFP(Y-1) 0.038 -0.082
(0.12) (0.10)
SPEI (¥2) -0.041 0.078 -0.054 0.062
(0.06) (0.13) (0.06) (0.13)
SPEF(Y-2) 0.170 -0.142
(0.12) (0.15)
2nd quarter 0.861* 0.826** 0.863** 0.820** 0.858** 0.824** 0.867** 0.815**
(0.11) (0.11) (0.11) (0.11) (0.11) (0.12) (0.12) (0.11)
3d quarter 0.795* 0.846** 0.798** 0.842* 0.786** 0.847* 0.795** (0.839**
(0.09) (0.112) (0.09) (0.11) (0.10) (0.112) (0.10) (0.11)
4th quarter 0.656** 0.501** 0.655** 0.505* 0.647** 0.504** 0.649** 0.500**
(0.08) (0.112) (0.08) (0.11) (0.09) (0.112) (0.09) (0.11)
Constant 0.691* 0.405+ 0.673** 0.371+ 0.647** 0.400+ 0.596** 0.428+
(0.13) (0.21) (0.14) (0.21) (0.12) (0.21) (0.14) (0.22)
Cntr FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
AlIC 2026.853 1896.57C 2025.681 1896.103 2027.083 1898.258 2029.109 1899.586
Joint F tes{SPEI) 7.09* 2.18 14.54** 2.82+ 6.14** 2.44+ 6.51** 4.54**
CV rmse 1.435 1.100 1.446 1.110 1.390 1.084 1.413 1.096
N 768 768 768 768 768 768 768 768
N Countries 32 32 32 32 32 32 32 32

Std errors clustered by country. CV rmseln8ifr(@dedsian sample) and 1.@8¢@nan sample).
+ p<0.10, * p<0.05, ** p<0.01

23



Table /8. Large Weather Shbc8PEI growing season

Model 13 Model 14 Model 15 Model 1€
High Agr. Low Agr. High Agr. Low Agr.
N Migr, In (Q1) 0.524** 0.569** 0.524** 0.565**
(0.05) (0.05) (0.05) (0.05)
N Migr, In (Q2) -0.057  0.073+ -0.053 0.078*
(0.05) (0.04) (0.05) (0.04)
N Migr, In (Q3) 0.137** 0.061  0.144** 0.063
(0.03) (0.05) (0.03) (0.05)
N Migr, In (Q4) 0.004 0.050 0.009 0.050
(0.04) (0.06) (0.04) (0.06)
Drought (YO0) -0.317* -0.115 -0.281+ -0.133+
(0.14) (0.08) (0.15) (0.08)
Drought (1) 0.146 -0.015
(0.20) (0.12)
Drought (¥-2) 0.171  -0.304+
(0.14) (0.16)
Ex. rainfall (Y0) 0.439** 0.067  0.397** 0.029
(0.12) (0.09) (0.12) (0.10)
Ex. rainfall (Y1) -0.207 -0.098
(0.13) (0.12)
Ex. rainfall (¥2) 0.005 -0.113
(0.11) (0.17)
2nd quarter 0.867** 0.826** 0.863** 0.814*
(0.11) (0.12) (0.11) (0.11)
3d quarter 0.805** 0.843* 0.806** 0.839**
(0.10) (0.11) (0.10) (0.112)
4th quarter 0.649**  0.496** 0.652** 0.496**
(0.08) (0.11) (0.09) (0.11)
Constant 0.670** 0.401+ 0.623* 0.501*
(0.12) (0.20) (0.13) (0.23)
Cntr FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
AIC 2024.214 1899.332 2026.706 1899.338
Joint F test (SPEI 10.20** 1.23 5.94** 187
CV rmse 1.453 1.081 1.403 1.089
AIC 2024.214 1899.332 2026.706 1899.338
N Countries 32 32 32 32

Std errors clustered by country. CV rmse null models: 1.377 (agra
and 1.092 (nagrarian sample).
+ p<0.10, * p<0.05, ** p<0.01

24



Figure /. SPEI growing sedsdmmediagéects of weather shotkgaionith 95% confidence interval
(Mode2, Table /).

Figure A: SPEI growing sedsdmmediate effects of weather shocks on migration cahdrgonal on agri
relianaeith 95% confidence igkéodal andB, Table A)
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Table 2: Main Modefs N Migrants per 100,000 inhabitants

Model 1 Model 2 Model 3 Model 4

N Migr, In (Q1)  0.764** 0.760* 0.760** 0.753*
(0.06)  (0.06)  (0.06)  (0.06)
N Migr, In (Q2)  -0.172* -0.174* -0.170* -0.169*
(0.07)  (0.07) (0.07)  (0.07)
N Migr, In (Q3)  0.125  0.124 0130  0.128
(0.09)  (0.09)  (0.09)  (0.09)
N Migr, In (Q4)  0.083  0.085 0.089  0.097
(0.06)  (0.06)  (0.06)  (0.06)

SPEI (YO0) 0.098* 0.101* 0.088* 0.097*
(0.04) (0.04) (0.04) (0.04)
SPEF(YO0) 0.063 0.051
(0.05) (0.04)
SPEI (¥1) -0.067 -0.066
(0.05) (0.05)
SPEP(Y-1) -0.109
(0.12)
SPEI (¥2) 0.069 0.076
(0.05) (0.05)
SPEF(Y-2) -0.045
(0.06)
2nd quarter 0.251** 0.250** 0.251** 0.248**
(0.04) (0.04) (0.04) (0.04)
3d quarter 0.182** 0.182** 0.183** 0.180**
(0.03) (0.03) (0.03) (0.03)
4th quarter 0.088* 0.089* 0.090* 0.088*
(0.04) (0.04) (0.04) (0.04)
Constant -0.012 -0.022 -0.019 -0.001
(0.05) (0.05) (0.05) (0.05)
Cntr FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
AIC 1583.51¢ 1583.804 1577.943 1576.171
Joint F test (SPEI  6.15* 4.16* 2.42+ 2.36*
CV rmse 0.363 0.369 0.365 0.363
N 1520 1520 1520 1520
N Countries 64 64 64 64

Std. errors clustered by country. CV rms®.868 model:
+ p<0.10, * p<0.05, ** p<0.01
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Table ALG Split sample modédsMigrants per 100,000 inhabitants

Model 5 Model 6 Model 7 Model 8 Model 9 Model 1C

Model 11 Model 12

High Agr. Low Agr. High Agr. Low Agri High Agr. Low Agr. High Agr. Low Agri
N Migr, In (Q1) 0.691** 0.821** 0.673** 0.820** 0.690* 0.813** 0.664** 0.810**
(0.05) (0.112) (0.05) (0.11) (0.05) (0.112) (0.06) (0.12)
N Migr, In (Q2) -0.204**  -0.140 -0.211** -0.140 -0.199** -0.137 -0.203** -0.135
(0.05) (0.14) (0.05) (0.14) (0.05) (0.14) (0.05) (0.14)
N Migr, In (@3) 0.169** 0.042 0.163** 0.042 0.175** 0.042  0.170** 0.041
(0.03) (0.19) (0.03) (0.19) (0.03) (0.19) (0.03) (0.19)
N Migr, In (Q4) 0.000 0.192 0.003 0.192 0.008 0.195 0.029 0.197
(0.02) (0.12) (0.02) (0.12) (0.02) (0.12) (0.04) (0.12)
SPEI (YO0) 0.200* 0.037 0.214* 0.038 0.176* 0.039 0.208* 0.033
(0.09) (0.04) (0.09) (0.04) (0.08) (0.04) (0.10) (0.04)
SPEF(YO0) 0.192* 0.014 0.170* 0.008
(0.09) (0.05) (0.08) (0.05)
SPEI (¥1) -0.102 -0.014 -0.097 -0.013
(0.09) (0.04) (0.08) (0.04)
SPEFP(Y-1) -0.186 -0.008
(0.20) (0.05)
SPEI (¥2) 0.020 0.085 0.022 0.082
(0.05) (0.06) (0.06) (0.06)
SPEF(Y-2) 0.052 -0.092
(0.08) (0.08)
2nd quarter 0.267** 0.239** 0.266** 0.239** 0.266** 0.239** 0.262** (0.239**
(0.06) (0.04) (0.06) (0.04) (0.06) (0.04) (0.06) (0.04)
3d quarter 0.180** 0.179* 0.181* 0.178* 0.178* 0.180** 0.178** 0.180**
(0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04)
4th quarter 0.130* 0.045 0.129* 0.045 0.128* 0.049 0.131* 0.046
(0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05)
Constant 0.047 -0.056 0.031 -0.059 0.029 -0.051 0.024 -0.026
(0.06) (0.06) (0.06) (0.06) (0.05) (0.05) (0.07) (0.06)
Cntr FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
AlIC 865.432 682.388 860.543 684.342 865.618 682.112 857.818 685.320
Joint F test (SPEI  4.50* 0.84 3.04+ 0.68 1.58 1.19 2.86* 1.19
CV rmse 0.445 0.333 0.466 0.333 0.434 0.336 0.454 0.338
N 752 768 752 768 752 768 752 768
N Countries 32 32 32 32 32 32 32 32

Std erroctustered by country. CV rmse null models: 0.415 (agrarian samggyamahGaah(@pn
+ p<0.10, * p<0.05, ** p<0.01
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Table ALL Large weather stfodksMigrants per 100,000 inhabitants

Model 13 Model 14

High Agr. Low Agr.

Model 15 Model 1€

High Agr. Low Agr.

N Migr, In (Q1) 0.693** 0.822** 0.687** 0.811**
(0.05) (0.11) (0.05) (0.10)
N Migr, In (Q2) -0.200** -0.141 -0.205** -0.132
(0.05) (0.14) (0.05) (0.14)
N Migr, In (@3) 0.166** 0.042 0.175* 0.040
(0.03) (0.19) (0.03) (0.18)
N Migr, In (Q4) 0.001 0.192 0.010 0.190
(0.02) (0.12) (0.02) (0.12)
Drought (YO0) -0.092+ 0.010 -0.082+ -0.013
(0.05) (0.06) (0.04) (0.06)
Drought (¥-1) 0.035 -0.069
(0.05) (0.06)
Drought (¥-2) 0.017 -0.192*
(0.08) (0.08)
Ex. rainfall (YO) 0.214+ 0.043 0.209+ 0.031
(0.12) (0.03) (0.11) (0.03)
Ex. rainfall (Y1) -0.122 0.002
(0.08) (0.04)
Ex. rainfall (Y¥2) 0.075 -0.039
(0.08) (0.06)
2nd quarter 0.271** 0.240** 0.266** 0.239**
(0.06) (0.04) (0.06) (0.04)
3d quarter 0.183** 0.177** 0.180** 0.178**
(0.04) (0.04) (0.04) (0.04)
4th quarter 0.131* 0.042 0.131* 0.047
(0.05) (0.05) (0.05) (0.05)
Constant 0.028 -0.064 0.019 -0.005
(0.05) (0.06) (0.05) (0.06)
Cntr FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
AIC 866.861 684.375 868.433 679.970
Joint F test (SPEI  2.12 1.34 1.80 1.39
CV rmse 0.445 0.332 0.443 0.342
N 752 768 752 768
N Countries 32 32 32 32

Std errors clustered by country. CV rmse0ddiS{adedsian sample)
and 0.329 (ragrarian sample).
+ p<0.10, * p<0.05, ** p<0.01
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Figure A: Number of migrants per 100,000 inKalhitenésliate effects of weather shocks on migration
(Mode2, Table A)

Figure A: Number of migrants per 100,000 intfabitanedia¢dfects weather shocks on migration
conditional on agri. reliancesiodBz:[$able AJ)
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Table AL2 Main modeélsQuasPoison

Model 1 Model 2 Model 3 Model 4

N Migr, In (Q1) 0.630** 0.610** 0.642** 0.596**
(0.09) (0.09) (0.10) (0.10)

N Migr, In (Q2) -0.081 -0.099 -0.087 -0.104
(0.10) (0.09) (0.10) (0.09)
N Migr, In (Q3) 0.126 0.110 0.110 0.100
(0.18) (0.18) (0.17) (0.17)
N Migr, In (Q4) 0.093 0.156 0.101 0.158
(0.14) (0.15) (0.14) (0.15)
SPEI (YO0) 0.170 0.264 0.018 0.242
(0.28) (0.20) (0.26) (0.24)
SPEF(YO0) 0.875* 0.740+
(0.43) (0.412)
SPEI (¥1) -0.283  -0.453+
(0.22) (0.24)
SPEP(Y-1) -0.467+
(0.27)
SPEI (¥2) 0.362+ 0.188
(0.19) (0.22)
SPEF(Y-2) -0.443
(0.36)
2nd quarter 1.134** 1.018** 1.135* 1.016**
(0.31) (0.32) (0.33) (0.34)
3d quarter 1.072**  0.945* 1.042* 0.935*
(0.40) (0.41) (0.40) (0.42)
4th quarter 0.739* 0.663+ 0.775* 0.675+
(0.35) (0.34) (0.34) (0.36)
Cntr FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes

Joint chi2 teq{SPEI) 0.38 4.50 12.28**  46.17**

CV rmse 6164.208 6198.004 6207.225 6146.084
N 1536 1536 1536 1536
N Countries 64 64 64 64

Heteroskedasticity robust ste€\émnmoee null model: 5845.168
+ p<0.10, *p<0.05, ** p<0.01
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Table AL3 Split sample modeluasPoisson

Model 5 Model 6 Model 7 Model 8 Model 9 Model 1C Model 11 Model 12

High Agr. Low Agr. High Agr. Low Agri High Agr. Low Agr. High Agr. Low Agri

N Migr, In(Q-1) 0.744* 0.628** 0.630** 0.618** 0.686** 0.606** 0.602** (0.592**
(0.17) (0.112) (0.112) (0.11) (0.13) (0.112) (0.10) (0.12)
N Migr, In (Q2) -0.352**  -0.031 -0.294** -0.044 -0.312** -0.018 -0.257** -0.037
(0.12) (0.05) (0.08) (0.05) (0.09) (0.04) (0.07) (0.05)
N Migr, In (@3) 0.436* -0.040 0.366* -0.045 0.363** -0.053 0.302** -0.073
(0.18) (0.14) (0.13) (0.15) (0.10) (0.14) (0.08) (0.12)
N Migr, In (Q4) -0.152* 0.244 -0.056* 0.278 -0.102+ 0.246 -0.022 0.289
(0.06) (0.22) (0.02) (0.23) (0.06) (0.212) (0.05) (0.23)
SPEI (YO0) 0.914*  -0.234 0.770* -0.099 0.811* -0.262 0.679** 0.065
(0.23) (0.23) (0.212) (0.21) (0.18) (0.24) (0.22) (0.24)
SPEF(YO0) 1.770** 0.539 1.764** 0.242
(0.42) (0.62) (0.49) (0.55)
SPEI (¥1) -0.813* 0.099 -0.670** 0.042
(0.35) (0.19) (0.21) (0.20)
SPEFP(Y-1) 0.429 -0.098
(0.66) (0.46)
SPEI (¥2) -0.037 0.469* -0.151 0.309
(0.17) (0.24) (0.19) (0.24)
SPEF(Y-2) 0.842**  -0.999*
(0.30) (0.47)
2nd quart. 1.521** 0.902+ 1.407** 0.822 1.513* 0.916 1.442** 0.832
(0.21) (0.53) 0.17) (0.56) (0.18) (0.56) (0.16) (0.61)
3d quart. 0.768*  1.038+ 0.747** 0.972 0.810** 1.028 0.816** 0.977
(0.17) (0.63) (0.14) (0.66) (0.19) (0.66) (0.17) (0.70)
4h quart. 1.170** 0.410 0.943** 0.402 1.126** 0.507 0.916** 0.410
(0.32) (0.46) (0.24) (0.46) (0.29) (0.48) (0.24) (0.54)
Cntr FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Joint chi2 teqSPE) 15.74** 1.01 78.16** 1.32 205.81** 4.63 203.00** 51.37**
CV rmse 6151.055 6130.395 6228.762 6162.172 6186.825 6204.672 6227.337 6165.344
N 768 768 768 768 768 768 768 768
N Country 32 32 32 32 32 32 32 32

Heteroskedasticity robesta®CV rmse null models: 5930.408 (agrarian sample) and -68i&z23s@mple).
+ p<0.10, * p<0.05, ** p<0.01
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Table Al4 Large weather sifodBsasPoisson

Model 13 Model 14 Model 15 Model 1€

High Agr. Low Agr. High Agr. Low Agr.

N Migr, In (Q1) 0.656** 0.635** 0.580** 0.541**
(0.12) (0.11) (0.12) (0.10)
N Migr, In (Q2) -0.252**  -0.050 -0.197** -0.019
(0.09) (0.05) (0.07) (0.08)
N Migr, In (Q3) 0.324**  -0.048 0.289** -0.022
(0.12) (0.14) (0.07) (0.112)
N Migr, In (Q4) -0.071 0.258 -0.025 0.265
(0.05) (0.22) (0.08) (0.19)
Drought (YO0) 0.277 0.308 0.283 0.130
(0.32) (0.27) (0.28) (0.15)
Drought (Y¥-1) 0.587* -0.542**
(0.27) (0.20)
Drought (¥%2) 0.141  -1.085**
(0.11) (0.28)
Ex. rainfall (YO) 0.823* -0.380* 0.741** -0.078
(0.16) (0.17) (0.13) (0.25)
Ex. rainfall (Y1) -0.228 0.014
(0.36) (0.23)
Ex. rainfall (¥2) 0.321**  -0.318
(0.12) (0.37)
2nd quarter 1.436** 0.889 1.382** 0.779
0.17) (0.55) (0.10) (0.50)
3d quarter 0.665** 1.056+ 0.682** 0.769
(0.13) (0.64) (0.14) (0.71)
4th quarter 0.954**  0.434  0.966** 0.274
(0.23) (0.46) (0.21) (0.54)
Cntr FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Joint chi2 teqiSPEI) 25.74** 5,57+ 164.15** 83.48*
CV rmse 6178.990 6119.864 6240.213 6162.154
N 768 768 768 768
N Countries 32 32 32 32

Heteroskedastioliysttd errorsCV rmse null models: 5930.408 (agrariar
and 5818.323 (ragrarian sample).
+ p<0.10, * p<0.05, ** p<0.01
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Figure AQ QuasPoissoh Immediate effects of weather shocks on m@graabie(Madel

Note the wider scale of the y axis.

Figure A1 QuasPoissoh Immediate effects of weather shocks on migration cahdréelehca agri
(Moels7 andB, Table A3

Note the wider scale of the y axis.
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Table AL5 Main modeisQuarterly SPEI Measure

Model 1 Model 2 Model3 Model 4

SPEI (Q0) 0.007 0.005 0.004 0.002
(0.04) (0.04) (0.04) (0.04)
SPEP (QO0) 0.021 0.031
(0.04) (0.04)
SPEI (Q1) 0.113* 0.115* 0.105* 0.109*
(0.04) (0.05) (0.04) (0.04)
SPEP(Q-1) 0.017 0.015
(0.05) (0.05)
SPEI (Q2) 0.082+ 0.086* 0.074+ 0.073+
(0.04) (0.04) (0.04) (0.04)
SPEP(Q-2) 0.054 0.060+
(0.03) (0.03)
SPEI (Q3) 0.090* 0.093* 0.080* 0.081*
(0.04) (0.04) (0.03) (0.04)
SPEP(Q-3) 0.025 0.036
(0.03) (0.03)
SPEI (Q4) -0.009 -0.004
(0.04) (0.04)
SPEP(Q-4) 0.005
(0.04)
SPEI (Q5) -0.047 -0.040
(0.04) (0.04)
SPER(Q-5) 0.056+
(0.03)
SPEI (Q6) -0.047 -0.050
(0.04) (0.04)
SPER(Q-6) 0.050
(0.03)
SPEI (Q7) -0.031 -0.028
(0.05) (0.04)
SPEP(Q-7) -0.020
(0.04)
SPEI (Q8) 0.032 0.040
(0.04) (0.04)
SPEFP(Q-8) 0.035
(0.04)
SPEI (Q9) -0.045 -0.046
(0.04) (0.04)
SPEP(Q-9) 0.015
(0.04)
SPEI (Q10) -0.007 -0.001
(0.04) (0.04)
SPEP(Q-10) -0.034
(0.04)
SPEI (Q11) 0.040 0.043
(0.04) (0.04)
SPER(Q-11) 0.024
(0.03)
Cntr FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
AIC 3921.665 3926.612 3930.546 3945.066
Joint F test (SPEI'  5.77** 4,34 2.45*% 3.15**
CV rmse 1.281 1.292 1.262 1.291
N 1536 1536 1536 1536
N Countries 64 64 64 64

Stderrors clustered by country. CV rmse null model: 1.232
Constant, lag migration variables and quarterly dummies omit
+ p<0.10, * p<0.05, ** p<0.01
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Table ALG Split sample modeBuarterly SPEleasure

Model 5 Model 6 Model7 Model8 Model9 Model 10 Model 11 Model 12
High Agr. Low Agr. High Agr. Low Agri High Agr. Low Agr. High Agr. Low Agr.

SPEI (Q0) 0.041 -0.010 0.036 -0.010 0.045 -0.009 0.050 -0.017
(0.06) (0.06) (0.06) (0.06) (0.06) (0.06) (0.06) (0.07)
SPEP (QO0) 0.013 0.030 0.015 0.030
(0.05) (0.06) (0.05) (0.06)
SPEI (Q1) 0.101+ 0.121+ 0.105+ 0.121+ 0.087 0.110 0.083 0.122+
(0.06) (0.07) (0.06) (0.07) (0.06) (0.07) (0.05) (0.07)
SPEP(Q-1) 0.003 0.024 0.013 0.013
(0.08) (0.06) (0.07) (0.06)
SPEI (Q2) 0.191* -0.021 0.194** -0.018 0.183* -0.023 0.172* -0.029
(0.07) (0.05) (0.07) (0.05) (0.08) (0.05) (0.08) (0.05)
SPEFP(Q-2) 0.100** 0.010 0.086* 0.022
(0.03) (0.05) (0.03) (0.06)
SPEI (Q3) 0.098+ 0.081 0.100+ 0.088+ 0.084+ 0.079 0.094* 0.087+
(0.05) (0.05) (0.05) (0.05) (0.04) (0.05) (0.04) (0.05)
SPEFR(Q-3) -0.006 0.065 -0.001 0.070
(0.04) (0.05) (0.04) (0.05)
SPEI (Q4) -0.009 0.005 0.011 -0.000
(0.07) (0.06) (0.07) (0.06)
SPEF (Q-4) 0.075 -0.050
(0.06) (0.05)
SPEI (Q5) -0.103 0.004 -0.095 0.017
(0.07) (0.04) (0.07) (0.04)
SPEFR(Q-5) 0.035 0.086*
(0.05) (0.04)
SPEI (Q6) 0.058 -0.115* 0.046 -0.121*
(0.07) (0.05) (0.06) (0.04)
SPEF(Q-6) 0.100* -0.005
(0.04) (0.05)
SPEI (Q7) -0.108 0.027 -0.091 0.021
(0.08) (0.06) (0.07) (0.05)
SPEFP (Q-7) -0.020 -0.016
(0.06) (0.06)
SPEI (Q8) 0.042 0.049 0.043 0.056
(0.05) (0.06) (0.05) (0.06)
SPEF(Q-8) 0.071 0.001
(0.06) (0.06)
SPEI (Q9) -0.059 -0.033 -0.058 -0.041
(0.06) (0.06) (0.05) (0.07)
SPEF(Q-9) 0.029 -0.003
(0.07) (0.05)
SPEI (Q10) 0.005 -0.019 0.028 -0.016
(0.05) (0.06) (0.06) (0.06)
SPEFP (Q-10) -0.073 -0.021
(0.07) (0.05)
SPEI (Q11) 0.026 0.053 0.040 0.060
(0.06) (0.05) (0.07) (0.05)
SPEFP(Q-11) -0.016 0.064
(0.06) (0.05)
Cntr FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
AIC 2027.486 1897.196 2032.062 1903.397 2037.005 1904.636 2039.557 1911.250
Joint F test (SPEI  5.14** 1.82 3.44** 1.53 2.43* 2.88** 6.50** 3.96**
CV rmse 1.467 1.127 1.487 1.128 1.442 1.109 1.511 1.131
N 768 768 768 768 768 768 768 768
N Countries 32 32 32 32 32 32 32 32

Std. errors clustered by country. CV rmse null models: 1.377 (agrarian saegpéejcensaind®?) (non
Constant, lag migrasinables and quarterly dummies omitted from th
+ p<0.10, * p<0.05, ** p<0.01
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Table AL7: Large Weather SHo&sarterly SPEI Measure

Model 13 Model 14 Model 15 Model 16

High Agr. Low Agr. High Agr. Low Agr.
Drought (QO0) -0.100 -0.033 -0.068 -0.017
(0.11) (0.13) (0.12) (0.13)
Drought (Q1) -0.172 -0.136 -0.151 -0.140
(0.12) (0.11) (0.13) (0.12)
Drought (Q2) -0.071 -0.100 -0.055 -0.071
(0.13) (0.09) (0.13) (0.10)
Drought (Q3) -0.132 0.013 -0.120 0.022
(0.12) (0.10) (0.12) (0.11)
Drought (Q4) 0.210 -0.062
(0.20) (0.13)
Drought (Q5) 0.075 0.076
(0.12) (0.10)
Drought (Q6) 0.157 0.205+
(0.12) (0.11)
Drought (Q7) 0.082 -0.052
(0.12) (0.13)
Drought (Q8) 0.094 0.020
(0.11) (0.12)
Drought (Q9) 0.102 0.031
(0.18) (0.10)
Drought (Q10) 0.067 0.014
(0.21) (0.11)
Drought (Q11) -0.014 0.172
(0.12) (0.10)
Ex. rainfall (QO) 0.193* 0.063 0.167+ 0.070
(0.09) (0.11) (0.10) (0.10)
Ex. rainfall (Q1) 0.017 0.012 0.006 0.013
(0.16) (0.11) (0.16) (0.11)
Ex. rainfall (@2) 0.484** -0.120 0.431* -0.128
(0.14) (0.10) (0.15) (0.10)
Ex. rainfall (@) 0.057 0.151 0.043 0.152
(0.13) (0.09) (0.13) (0.10)
Ex. rainfall (4) -0.093 -0.069
(0.14) (0.11)
Ex. rainfall (G5) -0.165 0.106
(0.12) (0.10)
Ex. rainfall (Q6) 0.021 -0.172+
(0.12) (0.09)
Ex. rainfall (Q7) -0.157 0.103
(0.14) (0.10)
Ex. rainfall (@) 0.043 0.000
(0.13) (0.12)
Ex. rainfall (Q9) -0.018 -0.086
(0.13) (0.08)
Ex. rainfall (@L0) -0.083 -0.059
(0.11) (0.11)
Ex. rainfall (@L1) 0.031 0.189
(0.11) (0.12)
Cntr FE Yes Yes Yes Yes
Year Fe Yes Yes Yes Yes
AIC 2034.614 1905.372 2046.404 1909.082
Joint F test (SPEI) 4.30** 1.29 2.66** 6.88**
CV rmse 1.490 1.105 1.460 1.116
N 768 768 768 768
N Countries 32 32 32 32

Std errors clustered by country. CV rmse null models: 1.377 (agrarian saagpée)eemsiatn(s
Constant, lag migration variables and quarterly dummies omitted from the table.
+ p<0.10, * p<0.05, ** p<0.01
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Figure A2 Quarterly SPEI mea3uhemediate effects of weather shocks on migraablre(Madel

Quarterly coefficients have been linearly combined to protucaestimates.

Figure A3 Quarterly SPEI mea3uhemmediate effects of weatham ahigckison conditional on agri.
reliance (Modedad, Table A6

Quarterly coefficients have been linearly combined to petucakstimates.
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Table AL& Main models Countryear analysis

Model 1 Model 2 Model 3 Model 4

N Migr, In (¥1) _ 0.326" 0.327 0.316 0.311**
(0.06)  (0.06) (0.06)  (0.06)

SPEI (YO0) 0.423* 0.442* 0.439* 0.472*
(0.19) (0.18) (0.19) (0.18)
SPEF(Y0) 0.300 0.336
(0.29) (0.312)
SPEI (¥1) 0.200 0.199
(0.16) (0.15)
SPEFP(Y-1) 0.235
(0.22)
SPEI (}¥2) -0.116 -0.076
(0.17) (0.16)
SPEP(Y-2) 0.230
(0.21)
Constant 3.204**  3.130** 3.267** 3.149**
(0.31) (0.32) (0.30) (0.31)
Cntr FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
AIC 1013.888 1013.928 1015.272 1018.026
Joint F test (SPEI  4.85* 3.87* 2.77* 2.52*
CV rmse 2.897 2.907 2.954 3.012
N 384 384 384 384
N Countries 64 64 64 64

Std. errors clustered by country. CV rmse null model: 2.826
+ p<0.10, * p<0.05, ** p<0.01
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Table AL9 Split sample modelountryear analysis

Model 5 Model 6 Model 7 Model 8 Model 9 Model 1C Model 11 Model 12

High Agr. Low Agr. High Agr. Low Agri High Agr. Low Agr. High Agr. Low Agri

N Migr, In (¥1)  0.258* 0.415* 0.258* 0.420** 0.239" 0.406** 0.238** 0.416*
(0.07) (0.11) (0.07) (0.11) (0.07) (0.11) (0.07)  (0.11)

SPEI (YO0) 0.473 0.467* 0.474 0.461* 0.531 0.468* 0.488 0.514*
(0.32) (0.23) (0.35) (0.22) (0.34) (0.23) (0.36) (0.24)
SPEF(YO0) 0.002 0.672 0.118 0.624
(0.48) (0.45) (0.51) (0.49)
SPEI (¥1) 0.277 0.142 0.294 0.166
(0.25) (0.23) (0.22) (0.22)
SPEF(Y-1) 0.541* -0.311
(0.26) (0.37)
SPEI (¥2) -0.024 -0.177 -0.034 -0.099
(0.27) (0.21) (0.25) (0.22)
SPEFP(Y-2) 0.102 0.284
(0.30) (0.36)
Constant 3.442**  2.837** 3.442* 2.592** 3573* 2.867** 3.496** 2.599**
(0.31) (0.57) (0.31) (0.58) (0.33) (0.57) (0.35) (0.57)
Cntr FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
AIC 524,996 493.404 526.996 491.726 527.439 496.005 530.270 496.728
Joint F test (SPEI 2.19 4.30* 1.25 7.25%* 0.95 2.79+ 3.73** 2.87*
CV rmse 3.214 2.627 3.151 2.615 3.234 2.587 3.312 2.647
N 192 192 192 192 192 192 192 192
N Countries 32 32 32 32 32 32 32 32

Std. errors clustered by country. CV rmse null models: 2.956 (agrarian saagpée)aansa?ipds) (non
+ p<0.10, * p<0.05, ** p<0.01
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Table 20 Large weather sifod&suntryear analysis

Model 13 Model 14 Model 15 Model 16
High Agr. Low Agr. High Agr. Low Agr.
N Migr, In (¥1) 0.240**  0.419** 0.222*  0.418**
(0.07) (0.11) (0.07) (0.10)
Drought (YO0) -0.745* 0.225 -0.658+ 0.185
(0.27) (0.40) (0.35) (0.41)
Drought (¥-1) 0.266 -0.678
(0.35) (0.44)
Drought (¥-2) 0.270 -0.172
(0.33) (0.34)
Ex. rainfall (Y0) 0.520 0.333* 0.651 0.436*
(0.42) (0.15) (0.44) (0.20)
Ex. rainfall (Y1) 0.595+ 0.079
(0.31) (0.23)
Ex. rainfall (¥2) 0.245 0.111
(0.32) (0.34)
Constant 3.513** 2.708**  3.528*  2.786**
(0.30) (0.59) (0.31) (0.54)
Cntr FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
AIC 520.972 498.607 523.614 501.194
Joint Ftest (SPEI) 4.46* 2.41 2.57* 1.25
CV rmse 3.279 2.596 3.366 2.658
N 192 192 192 192
N Countries 32 32 32 32

Std. errors clustered by country: 2.956 (agrarian samplelgradi@58fp
+ p<0.10, * p<0.05, ** p<0.01
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Figure A4 Countryear analy3ismmediate effects of weather shocks on migyraabie(H8yel

Figure A5 Countryear analy8ismmediate effects of weather shocks ol g tmm agriure
reliance (Modalsd, Table A9
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Table 21 Main mode&lsAll observations

Model 1 Model 2 Model 3 Model 4

N Migr, In (Q1)  0.541* 0.541* 0.541** 0.540*
(0.03)  (0.03) (0.03)  (0.03)
N Migr, In (Q2) ~ 0.005  0.005 0.006  0.006
(0.03)  (0.03) (0.03)  (0.03)
N Migr, In (Q3)  0.091* 0.091* 0.092**  0.093*
(0.03)  (0.03) (0.03)  (0.03)
N Migr, In (Q4)  0.049+ 0.049+ 0.050+ 0.050+
(0.03)  (0.03)  (0.03)  (0.03)

SPEI (YO0) 0.121* 0.121** 0.122** 0.119**
(0.03) (0.03) (0.03) (0.03)
SPEF(YO0) 0.007 0.009
(0.04) (0.04)
SPEI (¥1) -0.033 -0.038
(0.04) (0.04)
SPEP(Y-1) 0.052
(0.05)
SPEI (¥2) 0.045 0.046
(0.04) (0.04)
SPEF(Y-2) 0.020
(0.04)
2nd quarter 0.371** 0.371** 0.371** 0.372**
(0.05) (0.05) (0.05) (0.05)
3d quarter 0.394**  0.394** 0.394** 0.396**
(0.04) (0.04) (0.04) (0.04)
4th quarter 0.251* 0.251** 0.251** 0.253**
(0.04) (0.04) (0.04) (0.04)
Constant 0.249** 0.248** 0.244** 0.228**
(0.06) (0.06) (0.06) (0.06)
Cntr FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
AIC 7235.57C 7237.543 7234.79¢ 7239.146€
Joint F test (SPEI 18.22** 9.55** 6.73** 5.05**
CV rmse 0.996 0.996 0.996 0.996
N 3589 3589 3588 3588
N Countries 150 150 150 150

Std. errors clustered by country. CV rmse null model: 0.987
+ p<0.10, * p<0.05, ** p<0.01
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Table A2 Split sample modeM! observations

Model 5 Model 6 Model 7 Model 8 Model 9 Model 1C Model 11 Model 12

High Agr. Low Agr. High Agr. Low Agri High Agr. Low Agr. High Agr. Low Agri
N Migr, In (Q1) 0.537** 0.529* 0.537** 0.528** 0.536** 0.528** 0.536** 0.527**
(0.04) (0.06) (0.04) (0.06) (0.04) (0.06) (0.04) (0.06)
N Migr, In (Q2) -0.028 0.060 -0.028 0.061 -0.027 0.061 -0.027 0.062
(0.04) (0.05) (0.04) (0.05) (0.04) (0.05) (0.04) (0.05)
N Migr, In (@3) 0.118** 0.050 0.118** 0.051 0.120** 0.050 0.120** 0.052
(0.03) (0.05) (0.03) (0.05) (0.03) (0.05) (0.03) (0.05)
N Migr, In (Q4) 0.018 0.119+ 0.018 0.120+ 0.020 0.118+ 0.020 0.120*
(0.03) (0.06) (0.03) (0.06) (0.03) (0.06) (0.03) (0.06)
SPEI (YO0) 0.240** 0.037 0.241** 0.031 0.232** 0.042+ 0.231** 0.034
(0.05) (0.02) (0.05) (0.03) (0.05) (0.02) (0.05) (0.03)
SPEF(YO0) -0.004 0.048 0.009 0.047
(0.06) (0.05) (0.06) (0.05)
SPEI (¥1) -0.075 0.024 -0.080 0.028
(0.07) (0.03) (0.07) (0.04)
SPEFP(Y-1) 0.032 0.032
(0.09) (0.05)
SPEI (¥2) 0.062 0.034 0.051 0.043
(0.05) (0.05) (0.05) (0.05)
SPEF(Y-2) 0.071 -0.053
(0.07) (0.06)
2nd quarter 0.492** 0.236** 0.492** 0.237** 0.491** 0.237** 0.491** 0.237**
(0.07) (0.06) (0.07) (0.06) (0.07) (0.06) (0.07) (0.06)
3d quarter 0.470** 0.302** 0.470** 0.304** 0.469** 0.303** 0.470** 0.304**
(0.06) (0.06) (0.06) (0.06) (0.06) (0.06) (0.06) (0.06)
4th quarter 0.366** 0.134* 0.366** 0.136** 0.365** 0.134** 0.364** 0.136**
(0.06) (0.04) (0.06) (0.04) (0.06) (0.04) (0.06) (0.04)
Constant 0.348** 0.140 0.348** 0.128 0.333** 0.143 0.320** 0.139
(0.08) (0.11) (0.08) (0.11) (0.08) (0.11) (0.09) (0.10)
Cntr FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
AlIC 4263.442 2785.507 4265.439 2786.586 4262.948 2788.435 4267.828 2791.587
Joint F test (SPEI 19.54** 2.17 9.73** 2.73+ 7.21** 1.12 4 50** 1.85
CV rmse 1.088 0.916 1.089 0.911 1.079 0.911 1.085 0.918
N 1920 1656 1920 1656 1920 1656 1920 1656
N Countries 80 69 80 69 80 69 80 69

Std. errors clustered by country. CV rmse ni#iB(aogletari €ample#&% (noragrarian sample).
+ p<0.10, * p<0.05, ** p<0.01
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Table A23 Large weather sifodkis observations

Model 13 Model 14 Model 15 Model 1€

High Agr. Low Agr. High Agr. Low Agr.

N Migr, In (Q1)  0.540% 0528 0538 0.526*
(0.04)  (0.06) (0.04)  (0.06)
N Migr, In (Q2)  -0.026  0.062  -0.027  0.065
(0.04)  (0.05) (0.04)  (0.05)
N Migr, In (Q3)  0.114**  0.050 0.116**  0.049
(0.03)  (0.05) (0.03)  (0.05)
N Migr, In (Q4)  0.019  0.120+ 0.021  0.120+
(0.03)  (0.06) (0.03)  (0.06)

Drought (Y0) -0.193**  0.016 -0.182**  0.003
(0.06) (0.05) (0.07) (0.05)

Drought (1) 0.092 -0.049
(0.08) (0.06)

Drought (¥-2) 0.025 -0.078

(0.07)  (0.06)
Ex. rainfall (YO) ~ 0.194**  0.082* 0.204**  0.086*
(0.06)  (0.03) (0.06)  (0.03)

Ex. rainfall (Y1) -0.022 0.006
(0.05) (0.03)
Ex. rainfall (¥2) 0.129* 0.018
(0.06) (0.08)
2nd quarter 0.492*  0.237** 0.494** (0.234**
(0.07) (0.06) (0.07) (0.06)
3d quarter 0.467** 0.304** 0.468** 0.301**
(0.06) (0.06) (0.06) (0.06)
4th quarter 0.357** 0.135* 0.356** 0.131**
(0.06) (0.04) (0.06) (0.04)
Constant 0.348** 0.124 0.326** 0.147
(0.08) (0.11) (0.08) (0.10)
Cntr FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
AIC 4269.053 2785.909 4270.445 2790.463
Joint F test (SPEI  9.20** 2.84+ 4.28** 1.29
CV rmse 1.080 0.915 1.083 0.909
N 1920 1656 1920 1656
N Countries 80 69 80 69

Std. errors clustered by €dunrge null models§9layrarian sample)
and 0.89(noragrarian sample).
+ p<0.10, * p<0.05, ** p<0.01
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Figure A6 All observatiohdmmediate and lag effects of weather shocks on &)igedileriModel

Figure A7 All observatiohdmmediate and lag effects of weather shocks on migratioouttumditional on ag
reliance (Modedad, Tale A22)
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Table 24 Main modelsNo lagednigration variables

Model 1 Model 2 Model 3 Model 4

SPEI (YO0) 0.570** 0.577** 0.565** 0.566**
(0.16) (0.15) (0.17) (0.16)
SPEF(YO0) 0.214 0.261
(0.21) (0.22)
SPEI(Y-1) 0.015 0.007
(0.17) (0.17)
SPEP(Y-1) 0.200
(0.20)
SPEI (}¥2) -0.119 -0.113
(0.17) (0.17)
SPEF(Y-2) 0.242
(0.18)
2nd quarter 0.648** 0.648** 0.648** 0.650**
(0.06) (0.06) (0.06) (0.06)
3d quarter 0.962** 0.962** 0.960** 0.965**
(0.08) (0.08) (0.08) (0.08)
4th quarter 0.837** 0.835** 0.834** (0.838**
(0.06) (0.06) (0.06) (0.06)
Constant 2.534**  2.496** 2.533** 2.407**
(0.16) (0.16) (0.16) (0.18)
Cntr FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
AIC 4626.032 4625.177 4628.15C 4626.165
Joint F test (SPEI 13.22** 7.36** 5.49** 5.21**
CV rmse 3.142 3.150 3.136 3.160
N 1536 1536 1536 1536
N Countries 64 64 64 64

Std. errors clustered by country. CV rmse rilBBmodels: 3.
+ p<0.10, *p<0.05, ** p<0.01
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Table A5 Split sample modé¥o lagged migration variables

Model 5 Model 6 Model 7 Model 8 Model 9 Model 1C Model 11 Model 12

High Agr. Low Agr. High Agr. Low Agri High Agr. Low Agr. High Agr. LowAgri

SPEI (YO0) 0.816** 0.361* 0.824** 0.364* 0.838** 0.337+ 0.821* 0.330+
(0.26) (0.16) (0.24) (0.16) (0.26) (0.18) (0.26) (0.18)
SPEF(YO0) 0.303 0.060 0.365 0.063
(0.27) (0.24) (0.26) (0.27)
SPEI (¥1) 0.138 -0.095 0.114 -0.087
(0.26) (0.24) (0.25) (0.25)
SPEFP(Y-1) 0.106 0.134
(0.30) (0.30)
SPEI (¥2) -0.054 -0.163 -0.073 -0.166
(0.20) (0.28) (0.19) (0.29)
SPEF(Y-2) 0.376 -0.040
(0.26) (0.25)
2nd quarter 0.681* 0.616** 0.683** 0.615* 0.680** 0.616** 0.687** 0.616**
(0.10) (0.08) (0.10) (0.08) (0.10) (0.08) (0.10) (0.08)
3d quarter 0.970** 0.952** 0.971** 0.951* 0.970** 0.949** 0.977** 0.952**
(0.11) (0.112) (0.11) (0.11) (0.11) (0.112) (0.112) (0.11)
4th quarter 0.871* 0.798** 0.866** 0.798** 0.872** 0.793** 0.866** 0.797**
(0.07) (0.10) (0.07) (0.10) (0.07) (0.10) (0.07) (0.11)
Constant 2.339**  2.740** 2.298** 2.726** 2.357* 2.727** 2.253** 2.694**
(0.23) (0.22) (0.23) (0.22) (0.24) (0.21) (0.23) (0.29)
Cntr FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
AlIC 2315.487 2301.331 2314.504 2303.223 2318.078 2303.435 2317.434 2308.642
Joint F test (SPEI  9.99** 5.00* 6.09** 3.50* 3.58* 3.34* 8.74* 2.27+
CV rmse 3.155 3.145 3.170 3.143 3.163 3.123 3.210 3.130
N 768 768 768 768 768 768 768 768
N Countries 32 32 32 32 32 32 32 32

Std. errors clustered by country. CV rmse n@iBaoglet@arBsample) add @dragrarian sample).
+ p<0.10, * p<0.05, ** p<0.01
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Table A6 Large weather stfodds lagged migration variables

Model 13 Model 14 Model 15 Model 1€

High Agr. Low Agr. High Agr. Low Agr.

Drought (Y0) -0.521*  -0.166 -0.465* -0.209
(0.19) (0.23) (0.21) (0.24)

Drought (¥-1) 0.329 -0.179
(0.28) (0.19)

Drought (¥-2) 0.470**  -0.207

(0.16)  (0.33)
Ex. rainfall (YO) ~ 0.646*  0.246*  0.636*  0.214*
(0.28) (0.11) (0.27)  (0.10)

Ex. rainfall (Y1) 0.120 -0.032
(0.20) (0.22)
Ex. rainfall (¥2) 0.251 -0.198
(0.23) (0.19)
2nd quarter 0.689** 0.613** 0.695** 0.608**
(0.09) (0.08) (0.10) (0.08)
3d quarter 0.975** 0.936** 0.988** (0.932**
(0.11) (0.11) (0.11) (0.11)
4th quarter 0.878** 0.784* 0.874** 0.785**
(0.06) (0.10) (0.07) (0.10)
Constant 2.300** 2.734* 2.237* 2.841**
(0.23) (0.22) (0.22) (0.26)
Cntr FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
AlIC 2326.293 2307.797 2322.717 2311.097
Joint F test (SPEI  5.43** 3.59* 3.74** 2.16-
CV rmse 3.149 3.136 3.191 3.137
N 768 768 768 768
N Countries 32 32 32 32

Std. errors clustered by €dunrge null model§9%ahrarian sample)
and 341 (noragrarian sample).
+ p<0.10, * p<0.05, *p<0.01
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Figure A8 No lagged migration vafiablesediagdfects of weather shocks on migra&idralidodel
A.24)

Note the wider scale of the y axis.

Figure A9 No lagged migration vafiablasediate effects of weather shocks on migration conditional c
agreulturesliance (Msdéband,8able AR

Note the wider scale of the y axis.
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Table 27 Main modeisNo population weighting

Model 1 Model 2 Model 3 Model 4

N Migr, In (Q1)  0.550* 0.550** 0.548* 0.548*
(0.04)  (0.04)  (0.04)  (0.04)
N Migr, In (Q2)  -0.006 -0.006 -0.005 -0.004
(0.04)  (0.04) (0.04)  (0.04)
N Migr, In (Q3)  0.105* 0.105** 0.108** 0.108**
(0.03) (0.03) (0.03) (0.03)
N Migr, In (Q4)  0.027  0.027  0.030  0.031
(0.03)  (0.03)  (0.03)  (0.03)

SPEI (YO0) 0.287** 0.283** 0.264** 0.254**
(0.07) (0.07) (0.07) (0.08)
SPEF(YO0) -0.026 -0.045
(0.08) (0.09)
SPEI (¥1) -0.120 -0.115
(0.08) (0.08)
SPEP(Y-1) 0.026
(0.12)
SPEI (¥2) 0.005 -0.010
(0.08) (0.09)
SPEF(Y-2) -0.105
(0.12)
2nd quarter 0.840** 0.840** 0.838** (0.838**
(0.08) (0.08) (0.08) (0.08)
3d quarter 0.815** 0.815** 0.814** 0.813**
(0.07) (0.07) (0.07) (0.07)
4th quarter 0.576** 0.576** 0.576** 0.573**
(0.07) (0.07) (0.07) (0.07)
Constant 0.610** 0.615** 0.575** (0.598**
(0.11) (0.11) (0.11) (0.11)
Cntr FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
AIC 3921.743 3923.672 3922.991 3927.438
Joint F test (SPEI 16.35** 8.10** 6.42** 3.56**
CV rmse 1.294 1.289 1.269 1.258
N 1536 1536 1536 1536
N Countries 64 64 64 64

Std. errors clustered by country. CV rmse null model: 1.232.
+ p<0.10, *p<0.05, ** p<0.01
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Table A8 Split sample modé\ population weighting

Model 5 Model 6 Model 7 Model 8 Model 9 Model 1C Model 11 Model 12

High Agr. Low Agr. High Agr. Low Agri High Agr. Low Agr. High Agr. Low Agri

N Migr, In (Q1)  0.526** 0.564* 0.525* 0.565** 0.526" 0.562** 0.524** 0.560**
(0.05)  (0.05) (0.05) (0.05) (0.05) (0.05) (0.05)  (0.05)
N Migr, In (Q2)  -0.064 0.070+ -0.064 0.070+ -0.062 0.072+ -0.064 0.074+
(0.05)  (0.04) (0.05) (0.04) (0.05) (0.04)  (0.05)  (0.04)
N Migr, In (@3)  0.134* 0061 0.134* 0.060 0.138** 0.063 0.137**  0.059
(0.04)  (0.05) (0.04) (0.05) (0.04) (0.05) (0.03)  (0.05)
N Migr, In (34)  0.007  0.049  0.006 0.047 0.011 0051  0.009  0.048
(0.03) (0.06) (0.03) (0.06) (0.04) (0.06)  (0.04)  (0.06)

SPEI (YO0) 0.434*  0.162* 0.443** 0.142+ 0.403** 0.152+ 0.397** 0.101
(0.12) (0.08) (0.12) (0.08) (0.13) (0.08) (0.13) (0.09)
SPEF(YO0) 0.064 -0.115 0.090 -0.200+
(0.11) (0.11) (0.12) (0.11)
SPEI (¥1) -0.130 -0.069 -0.126 -0.098
(0.15) (0.08) (0.15) (0.09)
SPEFP(Y-1) 0.130 -0.088
(0.22) (0.11)
SPEI (¥2) -0.024 0.048 -0.022 -0.032
(0.09) (0.14) (0.09) (0.16)
SPEF(Y-2) 0.115 -0.286
(0.13) (0.20)
2nd quarter 0.861* 0.824** 0.861** 0.827* 0.859** 0.824** 0.859** (0.829**
(0.11) (0.11) (0.11) (0.11) (0.11) (0.12) (0.11) (0.11)
3d quarter 0.794**  0.845** 0.794** 0.847* 0.789** 0.847* 0.789** 0.847**
(0.09) (0.112) (0.09) (0.11) (0.10) (0.112) (0.10) (0.11)
4th quarter 0.651* 0.501* 0.651** 0.500** 0.648** 0.504** 0.647** 0.488**
(0.08) (0.112) (0.08) (0.11) (0.08) (0.112) (0.09) (0.11)
Constant 0.768**  0.438* 0.762** 0.473* 0.717** 0.426* 0.687** (0.593**
(0.13) (0.20) (0.13) (0.20) (0.13) (0.20) (0.14) (0.20)
Cntr FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
AlIC 2026.752 1895.765 2028.532 1897.116 2029.474 1898.858 2034.095 1898.517
Joint F test (SPEI 12.50** 4.28* 7.26** 2.04 4.52** 2.68+ 4,.39*%* 1.65
CV rmse 1.503 1.124 1.514 1.122 1.460 1.106 1.503 1.113
N 768 768 768 768 768 768 768 768
N Countries 32 32 32 32 32 32 32 32

Std. errors clustered by country. CV rmse null models: 1.377 (agrariatheangpée)cansinpis).
+ p<0.10, * p<0.05, ** p<0.01
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Table 29 Large weather stfodds population weighting

Model 13 Model 14 Model 15 Model 1€
High Agr. Low Agr. High Agr. Low Agr.
N Migr, In (Q1) 0.531** 0.564** 0.526** 0.563**
(0.05) (0.05) (0.05) (0.05)
N Migr, In (Q2) -0.056  0.073+ -0.056  0.074+
(0.05) (0.04) (0.05) (0.04)
N Migr, In (Q3) 0.127** 0.060  0.129** 0.053
(0.04) (0.05) (0.04) (0.05)
N Migr, In (Q4) 0.011 0.047 0.013 0.040
(0.04) (0.06) (0.04) (0.06)
Drought (YO0) -0.394**  -0.142 -0.356** -0.180+
(0.12) (0.10) (0.12) (0.10)
Drought (1) 0.180 -0.174*
(0.12) (0.08)
Drought (¥-2) 0.101 -0.191
(0.08) (0.12)
Ex. rainfall (Y0) 0.282* 0.023 0.278* -0.010
(0.12) (0.09) (0.13) (0.08)
Ex. rainfall (Y1) 0.010 -0.075
(0.11) (0.12)
Ex. rainfall (¥2) 0.078 -0.128
(0.14) (0.16)
2nd quarter 0.881** 0.823** 0.874** 0.819**
(0.11) (0.11) (0.11) (0.11)
3d quarter 0.808** 0.842* 0.809** 0.840**
(0.09) (0.11) (0.10) (0.10)
4th quarter 0.659**  0.491** 0.656** 0.474**
(0.08) (0.11) (0.09) (0.11)
Constant 0.704**  0.455* 0.672** 0.602**
(0.12) (0.20) (0.13) (0.19)
Cntr FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
AlIC 2029.799 1898.926 2035.554 1900.328
Joint F test (SPEI  7.99** 1.00 3.75** 142
CV rmse 1.457 1.109 1.466 1.145
N 768 768 768 768
N Countries 32 32 32 32

Std. errors clustered by country. CV rmse null models: 1.377 (agre
and 1.092 (nagrarian sample).
+ p<0.10, * p<0.05, ** p<0.01
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Figure R0 No population weightihgmediate effects of weather shocks on migyratbie(M@del

Figure 21 No population weightihgmediate effects of weather shocks on migration calidigonal on agri
reliance (Msdélnd, & able A8
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Table B0 Main modeéils Temperature and precipitatioalies

Model 1 Model 2 Model 3 Model 4

N Migr, In (Q1) 0.554**  0.552** (0.549** (0.542**
(0.04) (0.04) (0.04) (0.04)
N Migr, In (Q2) -0.005 -0.005 -0.003  -0.002
(0.04) (0.04) (0.04) (0.04)
N Migr, In (Q3) 0.108** 0.108** 0.111** 0.112**
(0.03) (0.03) (0.03) (0.03)
N Migr, In (Q4) 0.029 0.030 0.035 0.033
(0.03) (0.03) (0.03) (0.03)
Temp (YO0) -0.004  -0.009 0.002 -0.012
(0.04) (0.04) (0.04) (0.04)
Temg (Y0) 0.051 0.034
(0.04) (0.04)
Temp (¥1) 0.030 0.018
(0.04) (0.03)
Temg (Y-1) -0.064+
(0.03)
Temp (¥2) -0.071  -0.086+
(0.05) (0.05)
TemgF (Y-2) -0.102**
(0.04)
Precip (Y0) 0.106** 0.108** 0.096** 0.103**
(0.03) (0.03) (0.03) (0.03)
Precip (YO) 0.009 0.016
(0.02) (0.02)
Precip (¥1) -0.058+ -0.055
(0.03) (0.03)
Precip? (Y-1) 0.000
(0.02)
Precip (¥2) -0.039  -0.040
(0.03) (0.03)
Precip (Y-2) 0.005
(0.02)
2nd quarter 0.843* 0.841** 0.834** 0.835**
(0.08) (0.08) (0.08) (0.08)
3d quarter 0.816** 0.816** 0.803** 0.808**
(0.07) (0.07) (0.07) (0.07)
4th quarter 0.576** 0.575** 0.567** 0.571**
(0.07) (0.07) (0.07) (0.07)
Constant 0.530** 0.476** 0.497** (0.533**
(0.11) (0.12) (0.12) (0.14)
Cntr FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
AlC 3924.485 3926.075 3923.301 3921.905
Joint F testWeather  7.98** 4.58* 4.50** 3.47**
CV rmse 1.229 1.234 1.223 1.239
N 1536 1536 1536 1536
N Countries 64 64 64 64

Std. errors clustered by country. CV rmse null model: 1.232.
+ p<0.10, * p<0.05, ** p<0.01
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Table AB1 Split sample modelemperature and precijpitetioalies

Model 5 Model 6 Model 7 Model 8 Model 9 Model 1C Model 11 Model 12

High Agr. Low Agr. High Agr. Low Agri High Agr. Low Agr. High Agr. Low Agri

N Migr, In (Q1) 0.526** 0.565* 0.525** 0.559* (0.516** 0.562** 0.515** 0.543**
(0.05) (0.06) (0.05) (0.06) (0.05) (0.06) (0.05) (0.06)
N Migr, In (Q2) -0.060 0.069+ -0.060 0.067+ -0.056 0.070+ -0.054 0.066+
(0.05) (0.04) (0.05) (0.04) (0.05) (0.04) (0.05) (0.04)
N Migr, In(Q-3) 0.137** 0.062 0.138** 0.060 0.139** 0.065 0.139** 0.067
(0.04) (0.05) (0.04) (0.05) (0.04) (0.05) (0.04) (0.05)
N Migr, In (Q4) 0.012 0.048 0.012 0.051 0.025 0.051 0.024 0.049
(0.04) (0.06) (0.04) (0.06) (0.03) (0.06) (0.04) (0.06)
Temp(YO0) 0.143+ -0.054 0.146+ -0.071 0.174* -0.049 0.163+ -0.082+
(0.07) (0.04) (0.08) (0.04) (0.08) (0.04) (0.08) (0.04)
Temp (Y0) 0.036 0.071 0.035 0.041
(0.04) (0.06) (0.03) (0.06)
Temp (¥1) 0.066 0.027 0.075 -0.005
(0.08) (0.06) (0.07) (0.05)
Temg (Y-1) -0.042 -0.081+
(0.06) (0.04)
Temp (¥2) -0.140+ -0.034 -0.144+ -0.061
(0.08) (0.07) (0.08) (0.06)
Temg (Y-2) -0.032 -0.170**
(0.05) (0.05)
Precip (YO) 0.151* 0.052+ 0.152** 0.055+ 0.122* 0.049 0.122* 0.060
(0.05) (0.03) (0.04) (0.03) (0.05) (0.03) (0.05) (0.04)
Precip (YO) 0.009 0.004 0.012 0.018
(0.02) (0.03) (0.02) (0.03)
Precip (Y1) -0.070 -0.043 -0.068 -0.044
(0.06) (0.04) (0.06) (0.04)
Precip? (Y-1) -0.004 0.003
(0.03) (0.03)
Precip (¥2) -0.069* 0.003 -0.076* 0.007
(0.03) (0.05) (0.04) (0.05)
Precip (Y-2) 0.004 0.003
(0.03) (0.03)
2nd quarter 0.861** 0.825* 0.859** 0.826** 0.840** 0.822** 0.843* 0.800**
(0.11) (0.12) (0.112) (0.11) (0.11) (0.12) (0.112) (0.12)
3d quarter 0.794** 0.846** 0.792** 0.848** 0.763** 0.843* 0.769** 0.826**
(0.09) (0.11) (0.09) (0.11) (0.09) (0.11) (0.10) (0.11)
4th quarter 0.649** 0.504** 0.647** 0.506** 0.625** 0.503** 0.629** 0.496**
(0.08) (0.11) (0.08) (0.11) (0.08) (0.11) (0.08) (0.11)
Constant 0.524*  0.461* 0.478** 0.404* 0.434** 0.436+ 0.428* 0.566*
(0.14) (0.20) (0.14) (0.20) (0.13) (0.22) (0.17) (0.27)
Cntr FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
AlIC 2026.909 1897.177 2030.213 1899.195 2025.219 1902.841 2035.264 1899.833
Joint F testWeathey  5.82** 2.76+ 3.46* 1.70 6.60** 1.92 3.98** 3.01**
CV rmse 1.428 1.108 1.431 1.119 1.417 1.086 1.432 1.156
N 768 768 768 768 768 768 768 768
N Countries 32 32 32 32 32 32 32 32

Std. errors clustered by country. CV rmse null models: 1.377 (agrarian saagpée)eemsafip®? (non
+ p<0.10, * p<0.05, ** p<0.01
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Table A2 Large weather sifocksmperature and precijpitatalies

Model 13 Model 14 Model 15 Model 1€

High Agr. Low Agr. High Agr. Low Agr.

N Migr, In (Q1) 0.522**  0.562** 0.514** 0.547**
(0.05) (0.06) (0.05) (0.05)
N Migr, In (Q2) -0.055 0.071+ -0.051 0.065+
(0.05) (0.04) (0.05) (0.04)
N Migr, In (Q3) 0.130**  0.063 0.131**  0.069
(0.03) (0.05) (0.03) (0.05)
N Migr, In (Q4) 0.013 0.051 0.021 0.049
(0.04) (0.06) (0.04) (0.06)
Hi temp (YO) 0.242+ 0.086 0.264+ 0.018
(0.13) (0.112) (0.13) (0.10)
Hi temp (¥1) 0.073 -0.164
(0.14) (0.10)
Hi temp (¥2) -0.121  -0.207*
(0.12) (0.08)
Lo temp (YO) -0.126 0.181 -0.137 0.110
(0.13) (0.16) (0.13) (0.14)
Lo temp (¥1) -0.084 -0.374*
(0.14) (0.10)
Lo temp (¥2) 0.093  -0.309*
(0.12) (0.12)
Hi precip (YO0) 0.349**  0.055 0.293* 0.082
(0.10) (0.10) (0.11) (0.10)
Hi precip (¥1) -0.179 0.003
(0.11) (0.14)
Hi precip (¥2) -0.134 0.053
(0.09) (0.12)
Lo precip (Y0) -0.262+ -0.024 -0.239 0.015
(0.14) (0.08) (0.15) (0.08)
Lo precip (Y1) 0.075 -0.025
(0.13) (0.07)
Lo precip (¥2) 0.179 -0.091
(0.11) (0.13)
2nd quarter 0.864**  0.829** 0.843** 0.790**
(0.112) (0.11) (0.12) (0.112)
3d quarter 0.809** 0.846** 0.782** 0.815**
(0.10) (0.11) (0.10) (0.112)
4 quarter 0.652**  0.504** 0.636** 0.475**
(0.08) (0.11) (0.08) (0.112)
Constant 0.555**  0.368+ 0.547** 0.548*
(0.14) (0.21) (0.15) (0.26)
Cntr FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
AlC 2030.788 1901.935 2039.350 1898.095
Joint F testWeather  3.65* 0.50 1.74 2.82**
CV rmse 1.87 1.0% 1.429 1.133
N 768 768 768 768
N Countries 32 32 32 32

Std. errors clustered by country. CV rmse null models: 1.377 (agraria
and 1.092 (ragrarian sample).
+ p<0.10, * p<0.05, ** p<0.01
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Figure R2 Temperature and precipitation ahdmaiexdiate effects of weather shocks on migration (Mode
2, Table 80

Figure R3 Temperature anomaliesnediate effects of weather shocks on migrati@agcomttitienal on
reliance (Models 7 and 8, Table A.31)
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Figure R4 Precipitation anontaliesmediate effects of weather shocks on migration conditional on agric
reliance (Models 7 and 8 Table A.31)
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Table A3 Split sample moddPoorer and richer countries

Model 5 Model 6 Model 7 Model 8 Model 9 Model 1C Model 11 Model 12
Poor Rich Poor Rich Poor Rich Poor Rich

N Migr, In (Q1)  0.503** 0.557** 0.503"* 0.556** 0.504** 0.555** 0.505** 0.554**
(0.05)  (0.06) (0.05) (0.06) (0.05) (0.06) (0.05)  (0.06)
N Migr, In (Q2)  -0.055 0.041 -0.055 0041 -0.052 0.043 -0.053  0.045
(0.05)  (0.04) (0.05) (0.04) (0.05)  (0.04) (0.05)  (0.04)
N Migr, In (33)  0.116* 0.086 0.116* 0.086 0.120* 0.088 0.118**  0.087
(0.04)  (0.05) (0.04) (0.05)  (0.04) (0.05) (0.04)  (0.05)
N Migr, In (34)  0.014 0051 0.014 0052 0016 0.055 0.018  0.058
(0.04)  (0.06) (0.04) (0.06) (0.04) (0.06) (0.04)  (0.06)

SPEI (YO0) 0.359**  0.244** 0.350** 0.242** 0.303* 0.236** 0.304* 0.248*
(0.12) (0.09) (0.12) (0.08) (0.14) (0.08) (0.14) (0.10)
SPEF(YO0) -0.053 0.054 0.014 0.024
(0.15) (0.10) (0.18) (0.10)
SPEI (¥1) -0.209 -0.072 -0.176 -0.056
(0.18) (0.09) (0.17) (0.08)
SPEFP(Y-1) 0.269 -0.182
(0.18) (0.15)
SPEI (¥2) -0.018 0.050 -0.012 0.062
(0.09) (0.13) (0.10) (0.13)
SPEF(Y-2) 0.203 -0.088
(0.25) (0.16)
2nd quarter 0.982* 0.688** 0.981* 0.687** 0.981** 0.687** 0.984** (0.685**
(0.11) (0.11) (0.11) (0.11) (0.11) (0.11) (0.11) (0.11)
3d quarter 0.850** 0.792** 0.850** 0.791** 0.846** 0.791** 0.842** 0.784**
(0.08) (0.12) (0.08) (0.12) (0.08) (0.12) (0.09) (0.12)
4th quarter 0.655** 0.532** 0.656** 0.533** 0.651** 0.534** 0.641** (0.523**
(0.09) (0.112) (0.09) (0.11) (0.09) (0.10) (0.09) (0.12)
Constant 0.688**  0.526* 0.695** 0.516* 0.640** 0.509* 0.595** 0.561*
(0.13) (0.24) (0.13) (0.24) (0.12) (0.23) (0.14) (0.24)
Cntr FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
AlIC 1920.966 1984.09€ 1922.877 1985.906 1922.177 1987.004 1925.569 1990.199
Joint F test (SPEI  8.34** 8.11* 4.34* 5.40** 3.11* 2.72+ 4.10** 1.80
CV rmse 1.587 1.117 1.584 1.113 1.542 1.099 1.582 1.093
N 744 792 744 792 744 792 744 792
N Countries 31 33 31 33 31 33 31 33

Std. errors clustered by country. CV rmse null models: 1.538 (Poor sample) and 1.061 (Rich sample).
+ p<0.10, * p<0.05, ** p<0.01
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Table A4 Large weather stfodksorer and richer countries

Model 1= Model 14 Model 15 Model 1€
Poor Rich Poor Rich

N Migr, In (Q1)  0.507** 0.561* 0.504** 0.562**
(0.05)  (0.06)  (0.05)  (0.06)
N Migr, In (Q2)  -0.055 0.042 -0.053  0.053
(0.05)  (0.04)  (0.05)  (0.04)
N Migr, In (Q3)  0.108* 0.089+ 0.112* 0.088+
(0.04)  (0.05)  (0.04)  (0.05)
N Migr, In (Q4)  0.014  0.051  0.014  0.047
(0.04)  (0.06)  (0.04)  (0.05)

Drought (Y0) -0.329+ -0.110 -0.299+ -0.145
(0.16) (0.112) (0.17) (0.112)

Drought (1) 0.192 -0.119
(0.17) (0.11)

Drought (¥-2) 0.026 -0.228

(0.12)  (0.16)
Ex. rainfall (YO) ~ 0.225* 0.228* 0.210+ 0.210*
(0.11)  (0.09) (0.11)  (0.09)

Ex. rainfall (Y1) -0.088 -0.112
(0.16) (0.10)
Ex. rainfall (¥2) 0.062 -0.067
(0.14) (0.14)
2nd quarter 0.992**  0.687** 0.985** 0.684**
(0.11) (0.11) (0.11) (0.112)
3d quarter 0.848** 0.783** 0.847** 0.784**
(0.08) (0.12) (0.08) (0.12)
4th quarter 0.652** 0.524** 0.649** (0.522**
(0.09) (0.11) (0.09) (0.11)
Constant 0.703** 0.481+ 0.676** (0.551*
(0.14) (0.24) (0.14) (0.22)
Cntr FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
AIC 1923.592 1987.214 1929.10C 1989.597
Joint F test (SPEI  4.69* 3.91* 2.07+ 1.65
CV rmse 1.594 1.093 1.581 1.086
N 744 792 744 792
N Countries 31 33 31 33

Stderrors clustered by country. CV rmse null models: 1.538 (Poor
and 1.061 (Rich sample).
+ p<0.10, * p<0.05, ** p<0.01
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Figure &5 Poorer and richer codntn@sediate effects of weather shocks on msgradiag, (Model
Table AR3
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Table A5 Split sample modeddrica vs Nekfrica samples

Model 5 Model 6 Model 7 Model 8 Model 9 Model 1C Model 11 Model 12
Africa  Not Afr. Africa  Not Afr. Africa  Not Afr. Africa  Not Afr.
N Migr, In (Q1) 0.480* 0.578** 0.479** 0.574** 0.480** 0.576* 0.479** 0.571**
(0.04) (0.06) (0.04) (0.06) (0.04) (0.06) (0.04) (0.06)
N Migr, In (Q2) -0.038 0.036 -0.037 0.035 -0.036 0.038 -0.037 0.039
(0.04) (0.06) (0.04) (0.06) (0.04) (0.06) (0.04) (0.06)
N Migr, In (@3) 0.092* 0.122** 0.091* 0.121* 0.094* 0.126** 0.093* 0.124**
(0.04) (0.03) (0.04) (0.03) (0.04) (0.04) (0.04) (0.04)
N Migr, In (Q4) 0.032 0.052 0.033 0.055 0.034 0.053 0.036 0.059
(0.04) (0.05) (0.04) (0.05) (0.04) (0.05) (0.04) (0.05)
SPEI (YO0) 0.415* 0.201+ 0.397** 0.197+ 0.384** 0.200+ 0.373** 0.207+
(0.09) (0.10) (0.09) (0.10) (0.10) (0.10) (0.12) (0.10)
SPEF(YO0) -0.109 0.100 -0.090 0.100
(0.16) (0.09) (0.17) (0.09)
SPEI (¥1) -0.100 -0.059 -0.088 -0.055
(0.13) (0.11) (0.13) (0.11)
SPEFP(Y-1) 0.168 -0.096
(0.17) (0.17)
SPEI (¥2) -0.088 0.123 -0.090 0.132
(0.10) (0.13) (0.10) (0.13)
SPEF(Y-2) 0.039 -0.012
(0.15) (0.17)
2nd quarter 0.884** 0.730** 0.884* 0.726** 0.884** 0.729** 0.883** (0.723**
(0.09) (0.13) (0.09) (0.13) (0.09) (0.13) (0.09) (0.13)
3d quarter 0.902** 0.689** 0.902** 0.686** 0.898** 0.690** 0.898** (0.685**
(0.08) (0.13) (0.08) (0.13) (0.08) (0.13) (0.08) (0.13)
4th quarter 0.613** 0.567** 0.614* 0.566** 0.609** 0.570** 0.609** 0.566**
(0.09) (0.10) (0.10) (0.10) (0.09) (0.10) (0.10) (0.10)
Constant 0.749** 0.381 0.765** 0.366 0.738** 0.375 0.722** 0.375
(0.12) (0.27) (0.12) (0.28) (0.12) (0.25) (0.14) (0.25)
Cntr FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
AlIC 2335.103 1551.783 2336.753 1553.095 2337.99¢ 1553.417 2342.702 1557.851
Joint F test (SPEI 20.97** 3.99+ 10.60** 3.76* 8.77* 1.71 5.75** 1.74
CV rmse 1.640 0.994 1.633 0.991 1.614 0.980 1.619 0.984
N 912 624 912 624 912 624 912 624
N Countries 38 26 38 26 38 26 38 26

Std errors clustered by country. CV rmse null models: 1.565 (Af86x(1safipies aachple
+ p<0.10, * p<0.05, ** p<0.01
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Table A36. Large weather stfodkBica vs Nekfricasamples

Model 1= Model 14 Model 15 Model 1€
Africa  Not Afr. Africa  Not Afr.

N Migr, In (Q1)  0.485* 0.582* 0.481* 0.576*
(0.05)  (0.06)  (0.05)  (0.06)
N Migr, In (Q2)  -0.036  0.037 -0.037  0.049
(0.04)  (0.06)  (0.04)  (0.06)
N Migr, In (Q3)  0.089* 0.122* 0.089* 0.121*
(0.04)  (0.03)  (0.04)  (0.03)
N Migr, In (Q4)  0.031  0.051  0.034  0.049
(0.04)  (0.05)  (0.04)  (0.05)

Drought (YO0) -0.275+ -0.091 -0.255+ -0.116
(0.14) (0.12) (0.14) (0.12)

Drought (1) 0.167 -0.137
(0.13) (0.11)

Drought (¥2) 0.154  -0.363*

(0.11)  (0.16)
Ex. rainfall (YO) ~ 0.261** 0.189+ 0.262** 0.208+
(0.09) (0.10) (0.09)  (0.10)

Ex. rainfall (Y1) 0.035 -0.123
(0.14) (0.08)
Ex. rainfall (¥2) -0.116 0.074
(0.13) (0.15)
2nd quarter 0.889** 0.732** 0.891** 0.735**
(0.09) (0.13) (0.09) (0.13)
3d quarter 0.901** 0.678** 0.901** 0.686**
(0.08) (0.13) (0.08) (0.12)
4th quarter 0.613** 0.554** 0.610** 0.560**
(0.09) (0.10) (0.10) (0.10)
Constant 0.740** 0.349 0.730** 0.428+
(0.12) (0.27) (0.13) (0.23)
Cntr FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
AlIC 2341.538 1554.578 2345.575 1552.597
Joint F test (SPEI  6.70** 1.97 3.09* 2.06
CV rmse 1.623 0.982 1.629 0.996
N 912 624 912 624
N Countries 38 26 38 26

Std. errors clustered by country. CV rmse ral(Afddatsinmple)
andd.96 (norAfricasample).
+ p<0.10, * p<0.05, ** p<0.01
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Figure R6 Africa vs néifrica sampte Immediagdfects of weather shocks on migratfoan@/®del
Table AR5
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Table A7 Main Modets Adding excluded migration routes

Model 1 Model 2 Model 3 Model 4

N Migr, In (Q1)  0.583** 0.580** 0.580** 0.577**
(0.04)  (0.04)  (0.04)  (0.04)
N Migr, In (Q2)  -0.053 -0.053 -0.051  -0.053
(0.04)  (0.04) (0.04)  (0.04)
N Migr, In (Q3)  0.108** 0.108* 0.113** 0.112*
(0.03) (0.03) (0.03) (0.03)
N Migr, In (Q4)  0.033  0.034  0.040  0.040
(0.03)  (0.03)  (0.03)  (0.03)

SPEI (YO0) 0.169** 0.167** 0.138+ 0.142*
(0.06) (0.06) (0.07) (0.07)
SPEF(YO0) 0.133* 0.162*
(0.06) (0.06)
SPEI (¥1) -0.173* -0.173*
(0.08) (0.08)
SPEP(Y-1) 0.073
(0.10)
SPEI (¥2) 0.016 0.015
(0.07) (0.07)
SPEF(Y-2) 0.099
(0.11)
2nd quarter 0.766** 0.766** 0.763** 0.766**
(0.07) (0.07) (0.07) (0.07)
3d quarter 0.666** 0.667** 0.664** 0.669**
(0.07) (0.07) (0.07) (0.07)
4th quarter 0.442**  0.442** 0.443** 0.444**
(0.07) (0.07) (0.07) (0.07)
Constant 0.702** 0.679** 0.667** 0.615**
(0.11) (0.11) (0.11) (0.11)
Cntr FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
AIC 4182.79€ 4182.323 4179.152 4180.719
Joint F test (SPEI  7.08** 6.73** 4.88** 4.03**
CV rmse 1.283 1.287 1.255 1.276
N 1694 1694 1694 1694
N Countries 71 71 71 71

Std errors clustered by country. CV rmse nd@ model: 1.2
+ p<0.10, * p<0.05, ** p<0.01
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Table A38 Split sample modeAslding excluded migration routes

Model 5 Model 6 Model 7 Model 8 Model 9 Model 1C Model 11 Model 12

High Agr. Low Agr. High Agr. Low Agri High Agr. Low Agr. High Agr. Low Agri

N Migr, In (Q1)  0.569** 0.591** 0.563** 0.591** 0.566"* 0.589* 0.558** 0.588**
(0.05)  (0.06) (0.05) (0.06) (0.05) (0.06)  (0.05)  (0.06)
N Migr, In (Q2)  -0.101+ 0.016 -0.101+ 0.015 -0.098+ 0.016 -0.100+ 0.016
(0.05)  (0.04) (0.05) (0.04) (0.05) (0.04) (0.05)  (0.04)
N Migr, In (@3)  0.143*  0.057 0.143* 0.057 0.151* 0.058 0.151*  0.059
(0.04)  (0.05) (0.04) (0.05) (0.04) (0.05) (0.04)  (0.05)
N Migr, In (34)  0.005  0.067 0.007 0.068 0.015 0070 0.016  0.071
(0.03) (0.06) (0.03) (0.06) (0.04) (0.06)  (0.04)  (0.06)

SPEI (YO0) 0.275* 0.080 0.280* 0.078 0.224+ 0.068 0.233+ 0.066
(0.12) (0.06) (0.11) (0.07) (0.13) (0.07) (0.12) (0.07)
SPEF(YO0) 0.232** 0.043 0.266** 0.065
(0.08) (0.08) (0.09) (0.08)
SPEI (¥1) -0.259+ -0.081 -0.269* -0.084
(0.13) (0.08) (0.13) (0.08)
SPEFP(Y-1) 0.029 0.086
(0.18) (0.09)
SPEI (¥2) 0.009 0.033 0.001 0.031
(0.07) (0.13) (0.07) (0.13)
SPEF(Y-2) 0.248 -0.004
(0.16) (0.16)
2nd quarter 0.797* 0.740** 0.801** 0.740** 0.792** 0.739* 0.801** 0.740**
(0.10) (0.11) (0.10) (0.11) (0.10) (0.11) (0.10) (0.11)
3d quarter 0.649** 0.693** 0.658** 0.692** 0.643** 0.693** 0.660** 0.694**
(0.09) (0.10) (0.09) (0.10) (0.09) (0.10) (0.10) (0.11)
4th quarter 0.501* 0.381* 0.504** 0.380** 0.500** 0.383** 0.505** (0.383**
(0.08) (0.112) (0.08) (0.10) (0.08) (0.10) (0.08) (0.11)
Constant 0.798* 0.581** 0.775* 0.569* 0.732** 0.568* 0.682** (0.534*
(0.11) (0.21) (0.12) (0.21) (0.10) (0.21) (0.12) (0.21)
Cntr FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
AlIC 2248.876 1939.282 2247.407 1941.140 2245.463 1942.068 2244.986 1947.295
Joint F test (SPEI  5.43* 1.55 6.07** 1.17 3.37* 1.65 5.03** 1.26
CV rmse 1.434 1.141 1.459 1.137 1.377 1.122 1.438 1.129
N 888 806 888 806 888 806 888 806
N Countries 37 34 37 34 37 34 37 34

Std errors clustered by country. CV rmse niiBifeapialtarl Sample) d2d(horagrarian sample).
+ p<0.10, * p<0.05, ** p<0.01
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Table A9 Large Weather Shbckslding excluded migration routes

Model 13 Model 14 Model 15 Model 1€

High Agr. Low Agr. High Agr. Low Agr.

N Migr, In (Q1)  0.573" 0.592%* 0.562** 0.591*
(0.05) (0.06) (0.05)  (0.06)
N Migr, In(Q-2)  -0.100+ 0.015 -0.103* 0.016
(0.05)  (0.04) (0.05)  (0.04)
N Migr, In (Q3)  0.144*  0.057 0.155*  0.059
(0.04)  (0.05) (0.04)  (0.05)
N Migr, In (Q4)  0.006  0.069  0.011  0.065
(0.03) (0.06) (0.03)  (0.06)

Drought (Y0) -0.122 0.025 -0.071 0.019
(0.10) (0.10) (0.10) (0.112)

Drought (1) 0.334* 0.006
(0.13) (0.11)

Drought (¥-2) 0.097 -0.151

(0.10)  (0.14)
Ex. rainfall (YO)  0.272+ 0.076 0283+ 0.044
(0.15)  (0.05)  (0.15)  (0.05)

Ex. rainfall (Y1) -0.173 -0.027
(0.13) (0.08)
Ex. rainfall (¥2) 0.261** -0.121
(0.09) (0.16)
2nd quarter 0.802**  0.741** 0.800** 0.739**
(0.10) (0.11) (0.10) (0.112)
3d quarter 0.652** 0.689** 0.662** 0.695**
(0.09) (0.10) (0.10) (0.10)
4th quarter 0.495** 0.376** 0.504** 0.384**
(0.08) (0.11) (0.08) (0.10)
Constant 0.760** 0.560* 0.708** 0.612**
(0.11) (0.21) (0.11) (0.20)
Cntr FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
AIC 2252.947 1941.721 2244.728 1946.504
Joint F test (SPEI 2.28 0.99 4.91** 073
CVrmse 1.425 1.129 1.428 1.138
N 888 806 888 806
N Countries 37 A4 37 34

Std errors clustered by country. CV rmse niiBifaapiatsari Sample)
and 1L.24(noragrarian sample).
+ p<0.10, * p<0.05, ** p<0.01
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Figure R7. Adding excluded migratior*rdotesediate effects of weather shocks on migration with 95%
confidence interval (Model 2,3able A.

Figure 28 Adding excluded migratiorirdatetsediatéeets of weather shocks on migration conditional on
agriculture reliance with 95% confidence interval (Model 3&nd 8, Table A.
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Table A0 Main Modets Adjustingpr spatial and serial correlation

Model 1 Model 2 Model 3 Model 4

N Migr, In (Q1) 0.549** 0.548** 0.548** 0.547**
(0.03) (0.03) (0.03) (0.03)
N Migr, In (Q2) -0.006 -0.007 -0.005 -0.006
(0.04) (0.04) (0.04) (0.04)
N Migr, In (@3) 0.106** 0.106** 0.109** 0.109**
(0.03) (0.03) (0.03) (0.03)
N Migr, In (Q4) 0.028 0.029 0.032 0.032
(0.03) (0.03) (0.03) (0.03)
SPEI (YO0) 0.304** 0.306** 0.279** 0.280**
(0.07) (0.07) (0.07) (0.07)
SPEF(YO0) 0.053 0.060
(0.09) (0.10)
SPEI (¥1) -0.136 -0.135
(0.09) (0.09)
SPEFP(Y-1) 0.034
(0.12)
SPEI (¥2) 0.003 0.005
(0.08) (0.08)
SPEF(Y-2) 0.020
(0.11)
2nd quarter 0.840** 0.839** (0.838** 0.838**
(0.08) (0.08) (0.08) (0.08)
3d quarter 0.815** 0.815* 0.813** 0.813**
(0.08) (0.08) (0.08) (0.08)
4th quarter 0.578* 0.577* 0.577** 0.577**
(0.08) (0.08) (0.08) (0.08)
Constant -0.270  1.994** 1.,994** 1.,983**
(0.19) (0.28) (0.28) (0.28)
Cntr FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Joint F test (SPEI)  16.59** 8.59** 6.29** 3.36**
N 1536 1536 1536 1536
N Countries 64 64 64 64

Std errors adjusted for spatial (cutoffod@temycarid serial (2 lags) corr
+ p<0.10, * p<0.05, ** p<0.01
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Table A1 Split sample modeAsljusting for spatial and serial correlation

Model 5 Model 6 Model 7 Model 8 Model 9 Model 1C Model 11 Model 12

High Agr. Low Agr. High Agr. Low Agri High Agr. Low Agr. High Agr. Low Agri

N Migr, In (Q1)  0.524* 0.564** 0524 0.564** 0525 0.562** 0.524** 0.561*
(0.04) (0.05) (0.04) (0.05) (0.04) (0.05)  (0.04)  (0.05)
N Migr, In (Q2)  -0.062 0.069 -0.063 0069 -0.060 0.070 -0.062 0.071
(0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05)  (0.05)
N Migr, In (33)  0.137** 0.061 0.136* 0.061 0.140* 0.063 0.140*  0.064
(0.04) (0.05) (0.04) (0.05) (0.04) (0.05)  (0.04)  (0.05)
N Migr, In (34)  0.008  0.050 0.008 0.050 0012 0.052 0.012  0.053
(0.03) (0.05) (0.03) (0.05) (0.04) (0.05)  (0.04)  (0.05)

SPEI (YO0) 0.464** 0.169+ 0.467* 0.171+ 0.429** 0.158+ 0.421** 0.150+
(0.12) (0.09) (0.12) (0.09) (0.12) (0.09) (0.12) (0.09)
SPEF(YO0) 0.067 0.045 0.086 0.030
(0.12) (0.13) (0.14) (0.13)
SPEI (¥1) -0.159 -0.076 -0.171 -0.074
(0.13) (0.11) (0.12) (0.11)
SPEFP(Y-1) 0.049 -0.012
(0.20) (0.13)
SPEI (¥2) -0.024 0.042 -0.041 0.038
(0.11) (0.12) (0.12) (0.12)
SPEF(Y-2) 0.183 -0.128
(0.19) (0.14)
2nd quarter 0.861* 0.824* 0.861** 0.823** 0.860** 0.823** 0.861** (0.822**
(0.11) (0.11) (0.11) (0.11) (0.11) (0.11) (0.11) (0.11)
3d quarter 0.796** 0.845** 0.796** 0.844** 0.791** 0.845** 0.792** (0.844**
(0.10) (0.10) (0.10) (0.10) (0.10) (0.10) (0.10) (0.10)
4th quarter 0.654** 0.501** 0.654* 0.502** 0.650** 0.503** 0.650** 0.500**
(0.09) (0.112) (0.09) (0.11) (0.09) (0.112) (0.09) (0.12)
Constant -0.454* 1.719** -0.468* 1.708* 1.953** (0.987** 2.364** (0.996**
(0.18) (0.35) (0.19) (0.35) (0.35) (0.33) (0.37) (0.32)
Cntr FE Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes
Joint F test (SPEI 16.04** 3.64+ 8.20** 1.90 6.12** 1.41 3.78** 0.99
N 768 768 768 768 768 768 768 768
N Countries 32 32 32 32 32 32 32 32

Std errors adjustegppétial (cutofff distaf@@ Km) and serial (2 lags) correlation.
+ p<0.10, * p<0.05, ** p<0.01
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Table M2 Large Weather Shbchsljusting for spatial and serial correlation

Model 13 Model 14 Model 15 Model 1€

High Agr. Low Agr. High Agr. Low Agr.

N Migr, In (Q1) 0532 0567 0.527** 0.564*
(0.04)  (0.05)  (0.04)  (0.05)
N Migr, In (Q2) -0.060 0.069 -0.063  0.078
(0.05)  (0.05)  (0.05)  (0.05)
N Migr, In (Q3)  0.131%*  0.061 0.138**  0.063
(0.04)  (0.05)  (0.04)  (0.05)

N Migr, In (Q4) 0.008 0.049 0.009 0.042
(0.04) (0.05) (0.04) (0.05)

Drought (YO) -0.312* -0.063 -0.267+ -0.103
(0.14) (0.12) (0.15) (0.12)

Drought (¥-1) 0.230+ -0.130
(0.14) (0.14)

Drought (-2) 0.068 -0.246+

(0.14)  (0.14)
Ex. rainfall (YO) ~ 0.375* 0.155+ 0.366**  0.116
(0.14)  (0.09)  (0.14)  (0.09)

Ex. rainfall (Y1) -0.055 -0.110
(0.11) (0.10)
Ex. rainfall (Y2) 0.134 -0.140
(0.13) (0.10)
2nd quarter 0.872*  0.825** 0.867** 0.824**
(0.11) (0.11) (0.112) (0.11)
3d quarter 0.799** 0.836** 0.800** 0.846**
(0.10) (0.10) (0.10) (0.10)
4th quarter 0.653**  0.492** 0.655** 0.502**
(0.09) (0.11) (0.10) (0.11)
Constant 2.381* 1.697** -0.583** 1.814**
(0.37) (0.36) (0.20) (0.34)
Cntr FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Joint F test (SPEI) 5.77** 1.79 3.19** 184+
N 768 768 768 768
N Countries 32 32 32 32

Std errors adjusted for spatial (cutoffo@i@tmycarid serial (2 lags) corr
+ p<0.10, *p<0.05, ** p<0.01
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Figure 29 Adjusting for spatial and serial cotrétatimediate effects of weather shocks on migration with
95% confidence in(dtodel 2, Tableld).

Figure A0: Adjusting for spatial and serial cotrefatiediate effects of weather shocks on migration
conditional agriculture reliance with 95% confidence interval (Model Z1and 8, Table A.
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