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Abstract 

The so-called `European Migrant Crisis’ has been blamed on armed conflict and economic misery, 
particularly in the Middle East and Sub-Saharan Africa.  Some have suggested that this process has 
been exacerbated by climate change and weather events.  In this paper, we evaluate these claims, 
focusing on the role of droughts in influencing irregular migration flows to the European Union.  
Drawing on temporally disaggregated data on the detection of unauthorized migrants at EU external 
borders, we examine how weather shocks affect irregular migration.  We show that weather events 
may indeed influence migration.  Yet, in contradiction to the findings from recent research, we find 
no evidence that a drought in a sending country increases unauthorized migration to the EU.  If 
anything, and while not entirely conclusive, the incidence of drought seems rather to exert a negative, 
albeit moderate, impact on the size of migration flows, in particular for countries dependent on 
agriculture.  Conversely, higher levels of rainfall increase migration.  We interpret this as evidence that 
international migration is cost-prohibitive, and that adverse weather shocks reinforce existing financial 
barriers to migration. 
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1 Introduction 

 

Do environmental shocks cause migration from poor countries to the European Union?  The well-known push-pull 

model of international migration suggests that factors in the receiving country such as economic 

opportunities, political freedom, and family ties “pull” in people seeking a better life, while economic 

hardships and violence can “push” people out of origin countries (Jenkins 1977; Zimmermann 1996).  

With the accelerating pace of climatic change, it is plausible that disruptions to normal weather 

patterns serve as an additional push factor as they can disrupt economic activity, particularly in the 

agricultural sector.  Indeed, many observers have linked climate shocks to food insecurity and large-

scale movements of people.  The Internal Displacement Monitoring Centre (IDMC) estimates that 

between 2008 and 2018, an average of 24 million people have been displaced by climate and weather-

related disasters (IDMC 2019). 

 A growing body of research has sought to uncover links between environmental factors and 

migration.  Feng et al. (2010) find that climate change and declining crop yields in Mexico lead, in part, 

to migration to the United States.  Missirian and Schlenker (2017) report that temperature fluctuations 

in countries of origin lead to additional asylum applications in Europe.  In the same vein, Cai et al. 

(2016) present evidence that rising temperature are associated with higher migration to OECD 

countries, but only for countries reliant on agriculture.  Reuveny and Moore (2009) find that natural 

disasters are positively linked to migration to developed countries.  Looking at internal migration in 

Indonesia, Bohra-Mishra et al. (2014) demonstrate that province-to-province migration increases 

significantly with higher temperatures and responds to a lesser extent to precipitation.  Others have 

reported similar results for Pakistan and the United States (Feng et al. 2012, Mueller et al. 2014). In 

fact, a recent World Bank report predicts that internal migration will increase substantially as a result 

of climatic change (Rigaud et al. 2018). 
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Yet, others have found more complex relationships.  Cattaneo and Peri (2016) observe that, 

while higher temperatures in middle-income countries influence both international migration and 

urban growth, the same temperature rise in countries at the bottom wealth quartile have a negative 

effect on migration.  Koubi et al. (2016a, b), using survey data from six countries, find that slowly-

evolving natural disasters such as droughts do not prompt people to leave, as they are able to make 

necessary adaptations.  Thiede and Gray (2017) report that higher temperatures in Indonesia are 

associated with less, not more migration, but that delays in the onset of the monsoon season increase 

migration.  Gray and Mueller (2012) find that disasters and crop failure only have modest and 

inconsistent effects on migration in Bangladesh.  They conclude that, “although mobility can serve as 

a post disaster coping strategy, it does not do so universally, and disasters can in fact reduce mobility 

by increasing labor needs at the origin or by removing the resources necessary to migrate” (Gray and 

Mueller 2012: 4).  Thus, while natural disasters may be a push factor in migration decisions, they may 

also have countervailing effects on the propensity to leave.  It is also worth noting that others have 

reported no association between environmental factors and international migration (see Bohra-Mishra 

and Massey 2011, Beine and Parsons 2015).  In addition, data garnered in Tambacounda, a high 

emigration area in Senegal, show that climatic factors have little influence on migration to Europe 

(Ribot et al. 2020). 

In this paper we examine the competing claims that weather shocks—such as droughts and 

excess precipitation—may either increase or decrease emigration from a country.  On one hand, 

adverse weather events may disrupt livelihoods, especially in agriculture-dependent economies, 

prompting migration.  On the other hand, such shocks may decrease emigration by reducing the 

financial means to migrate. 

Our paper builds upon that of Missirian and Schlenker (2017), but relies on a different measure 

of migration, irregular migration to the European Union (EU), as well as of environmental shocks, 
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the Standardized Precipitation Evapotranspiration Index (SPEI).  In what follows, we use the terms 

irregular or unauthorized migration interchangeably to denote migration without a visa or other legal 

travel documents.  Understanding the relation between climatic variability and irregular migration is 

important, both from a scientific and a policy perspective.  First, irregular migration from developing 

countries represents a substantial share of migrants to the EU.  More than 2.2 million irregular 

migrants have been detected at EU external borders between 2009 and 2017, according to data 

compiled by Frontex, the European Border and Coast Guard Agency (this figure excludes the Western 

Balkans route and the Circular route from Albania to Greece).  By way of comparison, total immigration 

flows from non-EU countries amounted to over 13 million over the period 2009-2016 (Eurostat 

2018).  At its highest, the so-called 2015 “migration crisis” saw more than a million irregular migrants 

attempt to enter the EU.  In addition to war and economic misery, several commentators have claimed 

that climate change is a key driver of irregular migration to Europe and the United States (e.g., The 

Guardian 2015, The New York Times 2016, Washington Post 2018). 

Second, the political salience of unauthorized migration is high and has arguably fueled the 

rise of populist parties in Western countries.  Third, while prior research has generally focused on 

aggregate migration flows based on census data, these statistics often exclude irregular migrants.  

Despite a lack of systematic information, conventional knowledge on Mexican immigration to the US 

holds that undocumented migrants tend to have lower socioeconomic and educational status, 

compared to legal migrants (Hanson 2006).  They are also more likely to come from rural areas 

(Orrenius and Zavodny 2005).  While the validity of these studies to other contexts remains an open 

question, there are reasons to believe that climatic variability is a driver unauthorized migration 

(Nawrotzki et al. 2015, Chort and de la Rupelle 2019).  In fact, unauthorized migration is known to 

be more responsive to the economic cycle than legal immigration (Hanson and Spilimbergo 1999).  By 

comparison, visa applications typically last for months, and may be subject to stringent requirements.  
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To our knowledge, our study is one of the first to systematically examine the effect of weather shocks 

on irregular migration across a large number of countries and in the European context.1 

We contribute to the literature by offering a nuanced account of the effects of environmental 

change on migration to the EU.  We report evidence consistent with the claim that droughts may 

dampen migration pressure.  Conversely, higher than usual rainfall is associated with increased 

irregular migration to the EU.  Furthermore, our results indicate that this dampening effect is primarily 

driven by agriculturally-reliant countries.  While out-of-sample cross-validations suggest that climate 

variables never substantially improve the predictive ability of the estimated models, our findings 

nonetheless do not align with prevailing narratives that see droughts and global warming as associated 

with a rise in migration to the EU. 

In the next section, we review the recent literature on weather variability and international 

migration and formulate a set of observable implications.  We then present the Frontex data used to 

measure irregular migration to the EU and our main indicator of weather shocks, the Standard 

Precipitation-Evapotranspiration Index.  Section four discusses the results of the empirical analyses.  

Finally, section five concludes. 

 

2 Weather Shocks and Migration Theory 

 

Classical models of migration assume that individuals move in response to different wage rates 

between countries (Massey 1993) as well as within them (Nguyen et al. 2015).  An alternative approach 

views the household unit as the locus of decision-making, with the family choosing to send members 

 
1 For a similar, but independent study, see Missirian (2019). She compares UNHCR data on asylum applications with 
Frontex data on irregular migration flows and examines the correlates of irregular migration, including precipitation and 
temperature levels. She reports that “migration “may respond to temperature over the maize growing area and season, 
although the relationship is weak and unstable” (p. 19) 
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to work in more lucrative areas in order to receive remittances and diversify risk (Massey 1993; Taylor 

1999, Stark and Bloom 1985).  Both approaches argue that differences in earnings potential between 

origin and destination regions are a primary driver of migration.  Survey data from China (Zhu 2002) 

and Mexico (Quinn 2006), confirm that wage differences play a large role in migration decisions. 

 Adverse weather events can lead to disruptions in the local economy, depressing productivity 

and economic growth (Ahmed et al. 2009; Burke et al. 2015; Dell et al. 2012; Rowhani 2011).  Weather 

shocks—or large deviations from historical weather patterns—can be particularly disruptive to 

agrarian societies that do not have access to capital improvements such as irrigation, improved seeds 

and fertilizers, and crop insurance mechanisms (Adger et al. 2003).  Thus, weather shocks may threaten 

food security and exacerbate wage differentials between developing and developed countries leading 

to increased pressure to emigrate.  Previous studies have found that rural-urban migration in Sub-

Saharan Africa (Barrios et al. 2006, Marchiori et al. 2012), as well as Vietnam (Nguyen et al. 2015), is 

partly driven by weather shocks and agricultural decline.  Others have found that international 

migration also responds to adverse climatic events (Marchiori et al. 2012, Backhaus et al. 2015, Cai et 

al. 2016, Missirian and Schlenker 2017), and declining crop yields (Feng et al. 2010).  While they do 

not find evidence for a direct association with international migration, Beine and Parsons (2015) report 

a potential indirect pathway through the effects of rainfall deficits on wage differentials. 

 Yet, migration to developed countries can be a costly endeavor, with no guarantee of success.  

Studies have shown that the fees paid to human smugglers along the US-Mexico border have risen 

dramatically with the trend toward greater immigration enforcement (Roberts et al. 2010).  For 

potential Mexican migrants, financial barriers are a significant impediment to emigration (Angelucci 

2015, see also Stecklov et al. 2005).  In fact, recent research indicates that municipalities exposed to 

lower levels of rainfall and high temperature have sent fewer international migrants (Riosmena et al. 

2018).  Similarly, irregular migrants to Europe face significant smuggling costs, ranging on average 
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from 3,000 to 6,000 euros (Europol and Interpol 2016: 8).  Dustman and Okatenko (2014) 

demonstrate that migration decisions are non-linearly associated with income—relatively wealthy 

individuals do not have the incentive to migrate, while the very poor face budget constraints in making 

the journey (see also McKenzie and Rapoport 2007).  Kleemans (2015) finds that, in Indonesia, 

climatic variability has heterogenous effects with adverse weather shocks increasing the frequency of 

short-distance, rural moves, but decreasing long-distance, urban moves. Evidence from a field 

experiment in Bangladesh suggests that perceptions of risks associated with migration make poor rural 

households reluctant to send a migrant to cities, even when benefits are large (Bryan et al. 2014). 

Given that weather shocks have the greatest negative consequences in: a) poor countries; b) 

the agriculture sector; and c) vulnerable people with few resources, climatic events may have the short-

term effect of reducing the resources needed to make distant journeys.  Weather-related disasters may 

depress migration rates between poor countries and wealthy ones.  In fact, long-distance moves 

decreased during the 1983–5 drought in Mali (Findley 1994).  Recent findings suggest that rising 

temperatures in poor countries correlate with lower rates of international migration, due to financial 

barriers to migration (Cattaneo and Peri 2016).  In addition, Gray and Mueller (2012) note that weather 

shocks may increase local demand for labor, as poor households must devote greater effort to ensuring 

minimally-sufficient agricultural yields.  Hence, adverse weather shocks could further impoverish poor 

communities and thereby limit their ability to support the costs of migration (Black et al. 2013). 

Therefore, the effect of weather-related shocks on international migration is ambiguous.  

Climatic events may depress wages, overall economic growth, and threaten food security.  This serves 

as a push factor, leading to increased demand for emigration.  However, weather shocks may have the 

countervailing effect of diminishing the resources necessary for costly migration routes, especially 

among the most vulnerable.  Even if rural-urban migration or migration to proximate countries 
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increases, financial costs associated with illicit entry into rich countries may be prohibitive.  We thus 

have the following hypotheses: 

 

H1: Weather shocks in a sending country increase the level of irregular migration to the European Union. 

H2: Weather shocks in a sending country decrease the level of irregular migration to the European Union. 

 

The earlier discussion also implies that the association between weather shocks and migration 

might be stronger in countries more reliant on agriculture.  Indeed, previous research has documented 

how droughts and excess rainfall negatively affect agricultural production (Rosenzweig et al. 2002, 

Schlenker et al. 2009, Lobell et al. 2011).  Furthermore, agricultural productivity is widely held to be 

the primary channel through which climate change may affect international migration.  Recent studies 

have found evidence that agriculturally reliant countries experience higher rates of out-migration 

(Marchiori et al. 2012, Cai et al. 2016; see also Chort and de la Rupelle 2019).  Mastrorillo et al. (2016) 

report similar evidence as to the conditional effect of the size of the agricultural sector for internal 

migration across districts in South Africa.  Yet, this assumption has been questioned in the literature.  

Cattaneo and Peri (2016) show that far from increasing migration, higher temperatures in agricultural 

societies decrease the rate of emigration.  Similarly, Bazzi (2017) finds that negative precipitation 

shocks depress international migration among land-poor households in Indonesia.  Given the lack of 

clear expectations in the literature with regards to moderating effects of the size of the agricultural 

sector, we refrain from stating explicit hypotheses about the direction of the conditional relationship, 

and opt for the following hypothesis: 

 

H3: The (positive or negative) association between weather shocks and the level of irregular migration to the 

European Union is stronger in countries more reliant on agriculture. 
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While we focus on the agricultural sector in this paper, it is worth stating that we do not wish to deny 

the possibility that other channels may also matter.  For instance, Hsiang (2010) and Zhang et al. 

(2018) report evidence for a link between temperature and economic productivity. 

 

3 Data and research design 

 

Dependent variable: Irregular migration 

To measure the size of irregular migration, we use data collected by Frontex from national border 

authorities.  The data provide information on the number of illegal border crossings detected at the 

external borders of the EU and Schengen Associated Countries (Iceland, Liechtenstein, Norway and 

Switzerland).  Not part of the Schengen area, the United Kingdom and Ireland are not covered.  It is 

available in monthly format from 2009 onwards and is disaggregated by (self-reported) nationality of 

migrants and migration routes (8 in total, see the Appendix).  Aside from its high temporal and spatial 

granularity, drawing on the Frontex data presents two key advantages compared to alternative sources 

of data on migration flows, such as from existing databases on migration (Marchiori et al. 2012, Beine 

and Parsons 2015, Cattaneo and Peri 2016, Cai et al. 2016) or UNHCR data on asylum applications 

(Missirian and Schlenker 2017).  First, the data specifically focus on undocumented migrants, which 

may evade registration by state bureaucracies, or may opt not to apply for asylum.  In fact, migrants 

who stand little chance of asylum success have incentives not to register with state authorities, and 

thus are not included in statistics on asylum applications (for a discussion, see Missirian 2019).  Second, 

there could be a significant time lag between the moment individuals cross a border and when they 

are added to a population register or apply for refugee status.  This is because individuals may apply 

for asylum only upon detection or arrest by authorities, or after overstaying legal visas. These events 
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may occur several years after entry in the EU.  By contrast, the detection of unauthorized migrants is 

temporally closer to the departure from the home country, and associated weather shocks.  While 

asylum applications and Frontex detections are correlated at the 0.63 level, these are not identical 

measures (coefficient based on the sample of Table 1 in Section 4). 

[Figure 1 about here] 

Figure 1 presents the total monthly rate of apprehensions aggregated across all irregular 

migrations routes over the period 2010–2015 (corresponding to the time frame of the empirical 

analysis conducted in Section 4), along with the number of migrants of unspecified origins.  Aggregate 

trends in the detection of irregular migration were mostly stable over the period 2010–2013, hovering 

between 60,000 and 130,000 detections/year.  From 2014 onwards, irregular migration registered a 

marked uptick by more than an order of magnitude, peaking in 2015 with more than one million 

migrants detected.  This increase is attributable in large part to three countries: Syria, Iraq, and 

Afghanistan, although other countries have also witnessed significant increases in irregular migration 

to the EU over the same period (e.g. Pakistan, Eritrea, and Nigeria).  Figure 1 also reveals that 

migration patterns present high seasonality, with winter months consistently registering lower 

migration levels.  Figure 2 displays the distribution of irregular migrants by country of origin.  A 

disproportionate amount of migrants originate from the African continent, the Middle East and 

South-Asia.  In fact, just five countries account for 64% of unauthorized migrants detected (Syria, 

Afghanistan, Iraq, Eritrea, Nigeria).  In the Appendix, we provide additional information on temporal 

patterns for the eight largest sending countries in the Frontex data, as well report the total number of 

irregular migrants by country of origin over the period 2010–2015. 

[Figure 2 about here] 

Nevertheless, there are potential limitations to using these data.  First, the number of irregular 

migrants detected is not only a function of the true number of crossing attempts, but also of “the 
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amount of effort spent […] on detecting migrants” by national authorities (Frontex 2017a: 13, see also 

Hanson and Spilimbergo 1999).  Thus, year-to-year increase in the number of migrants detected could 

either reflect a rise in the number of migrants, or a higher rate of detection resulting from stricter 

enforcement.  Second, the country of origin is self-reported by the migrants.  Some irregular migrants 

may practice “nationality swapping” if they have reasons to believe that this will increase their chance 

of staying in Europe (Frontex 2017b: 19).  Third, aggregating data from separate migration routes may 

result in counting the same individual multiple times.  This is a concern for the Western Balkan Route.  

Migrants arriving in Greece by land or sea via the Eastern Mediterranean Route tend to continue towards 

Western European countries via the Balkans, and thus potentially be detected a second time at the 

borders with Slovenia, Croatia, and Hungary.  For this reason, we exclude the Western Balkan Route 

and the Circular route from Albania to Greece (thus, we also remove Balkan countries from the sample, as 

well as the residual migration route).  Fourth, as depicted in Figure 1, while the share of unspecified 

nationality is generally low (on average 4.7% per month), it exhibits considerable variation, reaching 

about 25% in April 2011 and 2014. 

To compute the dependent variable, we aggregate all migration routes and take the natural 

logarithm.  We add unity to the dependent variable to avoid taking the log of zero.  About 7.6% of 

the observations for Model 1 record zero migrants. 

 

Independent variable: Weather shocks 

Our primary indicator of weather shocks is the 3-month Standardized Precipitation 

Evapotranspiration Index (SPEI v.2.0), a probability drought index (Vicente-Serrano et al. 2010, 

Beguería et al. 2014).  The SPEI is available at the monthly level and can be calculatedly for different 

timescales: from a 1- month timescale up to 48-month timescale.  The climate literature has long 

recognized that droughts are multiscalar phenomena.  Soil water content, river discharge and 
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groundwater storage are important determinants of droughts.  The degree to which a hydrological 

system depends on these components is crucial in determining the timescale at which drought occurs 

(Vicente-Serrano et al. 2010: 1697–8).  We selected the 3-month SPEI as a compromise timescale 

between hydrological systems where immediate precipitations are an important determinant of 

droughts and hydrological systems, which have access to groundwater, and for which drought emerges 

at longer timescale.  We note that the prior literature offers little guidance.  Some studies have used 

the SPEI at very short timescales (1 month) (von Uexkull et al. 2016), while other focusing on arid or 

semi-arid countries have used longer timescale (12 months) (Mueller et al. 2014, Kubik and Maurel 

2016). 

The SPEI is obtained by first calculating a water balance index, subtracting potential 

evapotranspiration (PET) from the monthly total amount of precipitation. The index is then 

aggregated at the desired timescale.  PET, which measures the amount of water lost from the soil to 

the atmosphere under hypothetical conditions, is calculated using the Penman–Monteith equation, 

which incorporates in addition to temperature, wind speeds, solar radiations and relative humidity (see 

Beguería et al. 2014).  A three-parameter log-logistic distribution is then fit to the water balance index 

in order to obtain a standardized drought indicator.  The SPEI is an improvement over its precursor 

the SPI, which did not account for the effects of temperature, via evapotranspiration, and hence is 

unable to account for the increased duration and magnitude of droughts in recent times as a result of 

global warming (Vicente-Serrano et al. 2010: 1698–9).  Negative SPEI values indicate water deficits, 

while positive values correspond to water surpluses relative to a “normal” water balance.  The data 

are provided at monthly intervals in a raster format with a 0.5 degree resolution.  

 To measure deviations at the country-year level, we take the mean SPEI value per cell over 

the past 12-month ending with the current quarter and average across all cells in given country.  Hence, 

for the first quarter of the year, we take the average over the first three months of the current year 
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(January–March), as well as the nine last months in the previous year (April-December).  In computing 

the value for a given country, we weight the SPEI data by population.  Data on 2005 global population 

count is provided by the Gridded Population of the World (UN adjusted estimates) (v4.11) (CIESIN 

2018). 

Using a meteorological drought index is in contrast to some previous studies that use the direct 

effects of temperature and precipitation on international migration (e.g., Cattaneo and Peri 2016, Cai 

et al. 2016, Missirian and Schlenker 2017).  Droughts are complex phenomena characterized by both 

temperature and precipitation (McLeman 2013: 144).  In general, the SPEI is known to correlate with 

crop yields both at global (Vicente-Serrano et al. 2012) and local scales (e.g., Kubik and Maurel 2016, 

Peña-Gallardo et al. 2019).  Prior research has successfully relied on drought indicators, including the 

SPEI, to measure the impact of weather shocks on migration (Mueller et al. 2014, Mastrorillo et al. 

2016, Kubik and Maurel 2016).  Of particular note, Missirian and Schlenker (2017) and Missirian 

(2019) use measures of temperature and precipitation levels to estimate migration to the EU, rather 

than deviations from normal.  We prefer the SPEI, which is a standardized indicator of drought. 

Particularly in cross-national studies, it is important to consider long term averages and deviations 

from it, rather than direct indicators, as some regions naturally experience hotter/drier conditions 

and/or greater normal variability.  In the Appendix, we present the results of an alternative 

specification of the models using temperature and precipitation anomalies. 

 

Empirical specification 

To examine the effect of weather shocks on irregular migration to the EU, we estimate the 

following equation: 

𝐿𝑛 𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛𝑖𝑡𝑞 =  ∑ 𝜃𝑝𝐿𝑛 𝑀𝑖𝑔𝑟𝑖𝑡𝑞−𝑝

4

𝑝=1

+ 𝛽𝑊𝑒𝑎𝑡ℎ𝑒𝑟𝑖𝑡𝑞 + 𝛼𝑖 + 𝑦𝑒𝑎𝑟𝑡 + 𝑞𝑢𝑎𝑟𝑡𝑒𝑟𝑞 + 𝜀𝑖𝑡𝑞 
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The unit of analysis is the country of origin–year-quarter, indexed by i, t and q, respectively.  The 

dependent variable, Migration, is a log-transformed quarterly measure of migration levels.  Weatherit 

represents the SPEI variable.  αi is a vector of country of origin fixed effects.  Yeart and quarterq are 

vectors of year and quarter dummies. εit are robust errors clustered by country.  To account for 

temporal correlation in migration flows, we control for past levels of migration flows in the four prior 

quarters.  Because the association between weather anomalies and migration may exhibit non-

linearities, as well as delayed and temporal displacement effects (Carleton and Hsiang 2016, Hsiang 

2016), we include in subsequent models a quadratic polynomial of the SPEI variable, as well as two 

lag variables (Year-1 and Year-2). In fact, available data suggest significant variation in the duration of 

travels to Europe. For instance, while many sub-Saharan migrants require up to two years or more to 

complete their trips, about half do so in less than 12 months (Crawley et al. 2016: 27, see also Ribot 

et al. 2020: 46). 

Following recent studies (Missirian and Schlenker 2017, Cattaneo and Peri 2016), we do not 

include control variables (e.g., GDP per capita; conflict fatalities), as we are interested in measuring 

the total effect of weather variability on unauthorized migration.  Weather is exogenous to social 

processes such as economic production or armed conflict, and so, omitted variable bias should not be 

a concern.  Rather, factors such as economic growth may be conceived of as mediators through which 

weather may affect migration, and inclusion of these variables directly would lead to biased estimates 

(Dell et al. 2012, Hsiang and Burke 2014, O’Loughlin et al. 2014, Salehyan and Hendrix 2015).  While 

a full mediation analysis is beyond the scope of this paper, we leave the question of such effects for 

future research.  

Because we include lags of the dependent variable in the estimated equation, we have examined 

the stationarity of the dependent variable using the Levin-Lin-Chu panel unit-root test with panel-

specific means terms and cross-sectional means removed (Levin et al. 2002). The number of lags in 
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the panel ADF regressions is selected based on the AIC from a maximum of 8 lags determined using 

the Schwert criterion (1989). The results lead us to reject the null of hypothesis of unit root (adjusted 

T = -3.63, p-value < 0.001). 

The sample for the main set of analyses comprises 1,536 country-year-quarter observations 

extending over the period 2010–2015.  To prevent countries from which few migrants originate to 

influence the results, we restrict the sample to countries, which have sent a cumulative total of at least 

100 irregular migrants to the European Union over the entire period, for which we have access to 

Frontex data (2009–2017).  By systematically controlling for past migration flows and restricting the 

sample to only major source countries, we take a conservative approach.  We exclude also estimates 

of irregular migration flows for Palestine and Western Sahara, as it is likely that a substantial number 

of migrants from these two regions may have originated from the broader Middle East and North 

Africa, instead of the territory encompassed by the present borders of Israel/Palestine and Morocco.  

In total, the sample is made of 64 countries, comprising 38 countries located on the African continent, 

20 in Asia, 4 in Eastern Europe and 2 in the Americas.   

 

4 Results 

 

[Table 1 about here] 

Table 1 presents the results of the primary set of empirical analyses.  Model 1 is a baseline country-

year fixed-effects specification with quarter dummies and a single, contemporaneous SPEI term.  As 

shown by the positive coefficient, wetter than normal conditions in a given country increase the 

number of irregular migrants detected.  By contrast, the results suggest that adverse shocks, such as a 

drought, may potentially reduce migration.  In substantive terms, we note that the effect of a severe 

drought (SPEI –0.5) on irregular migration is moderate, resulting in a decrease of about 14% in the 
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number of migrants detected [95% CI: -20.0%, -7.9%].  Conversely, a large positive weather shock 

increases migration by about 16% [95% CI: + 8.5%, +25.0%].  The predictions (on the log scale) are 

exponentiated to obtain a measure of relative change in migration levels. 

Next, Model 2 replicates Model 1, but includes a quadratic term for weather shocks, to account 

for the possibility that the association with irregular migration is nonlinear.  In general, the result of 

the quadratic specification suggest that the association is very close to linear, with droughts causing a 

decrease in migration, while water surpluses are associated with more migration.  In fact, the AIC 

suggests that Models 1 and 2 are essentially indistinguishable (Burnham and Anderson 2004, Raftery 

1995).  Results of a F-test (not shown) leads to the same conclusion.  Figure A.3 in the Appendix 

depicts the relative change in the size of irregular migration flows for various levels of weather shocks, 

based on the more flexible specification of Model 2.  In general, these results of the first two models 

are suggestive of a “migration as investment” narrative, whereby positive shocks immediately increase 

the disposable income of individuals and households and help them overcome financial barriers to 

emigrate.  

Models 3 and 4 replicate the previous analyses adding lags for the SPEI values in the two 

previous years.  In general, neither model reveals evidence for lagged or temporal displacement effects 

of water deficits or surpluses on migration.  The results of a F-test (not shown) carried out on the 

lagged SPEI variables of both models 3 and 4 fails to rejects the null of hypothesis that the lagged 

terms are jointly zero.  Figure A.4 in the Appendix depicts the relative change in irregular migration 

as a result of weather shocks at various timescales (Year 0 to Year-2), based on the estimates of the 

more flexible Model 4.   

To better assess the extent to which the inclusion of the SPEI variable improves on the 

predictive ability of the model and to guard against overfitting (Cranmer and Desmarais 2017), we 

carried 5-fold out-of-sample cross-validations with the stata crossfold package (Daniels 2012).  For 
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each model, we report the root of the average mean square errors (𝐶𝑉 𝑟𝑚𝑠𝑒 =  √
1

𝑛
∑ 𝑚𝑠𝑒𝑖

𝑛
𝑖 ) and compare 

it to the same metric for a null modeling without the SPEI variables.  The results suggest that care 

should be taken when drawing conclusions about the association between weather shocks and 

irregular migration as the estimated average cross-validated error never outperform the null model. 

Overall, the evidence does not support Hypothesis H1, that migration increases as a result of drought 

conditions.  To the contrary, they provide tentative support for hypothesis H2, which predicts that 

droughts have a dampening effect on migration. 

We note that the number of unauthorized migrants detected in the previous quarter correlates 

with future detections.  The presence of temporal correlation is likely indicative of two distinct 

dynamics.  First, such an effect is probably related to the establishment of migrant and smuggling 

networks, which facilitate future movement. Second, the presence of temporal correlation could also 

reflect stronger monitoring by border agencies, following a period of increasing migration flows along 

a given route.  Interestingly, we find weaker, but significant, evidence for a temporal correlation with 

the level of migration two quarters earlier.  While it is hard to speculate on the reason for such a 

correlation, it could reflect differences in the speed of adjustments of migrant networks and 

monitoring by border agencies to an increase in unauthorized migration.  Finally, there are strong 

seasonal patterns in the data.  The number of irregular migrants detected in the second (April-June) 

and third (July-September) quarters are more than twice as high as in the first quarter (January-March).  

In the fourth quarter (October-December), the numbers are still about 75% percent higher. 

 

Could the association between weather shocks and irregular migration be stronger in countries which exhibit higher labor 

dependency on the agricultural sector?  Countries more reliant on agriculture are widely held to be more 

exposed to the adverse consequences of climate change (Marchiori et al. 2012).  Thus, Table 2 presents 

the results of the analyses, when we re-estimate Models 1–2, but split the sample into two equal groups 
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of observations: those whose 2010 share of labor employed in the agricultural sector is above the 

median, and those for which it is below or equal to the median (47.2%) (World Bank 2019). We refer 

to these two groups as “agrarian” and “non-agrarian” countries.  We also note that 47% of labor 

employed in agriculture is a high threshold value.  It results from the fact that countries, which have 

sent a cumulative total of at least 100 irregular migrants tend to be more agrarian than those who did 

not.  In the Appendix, we show the results of specifications, which include all the countries irrespective 

of the number of irregular migrants and use the global median share of agricultural labor instead (31.6 

%).   

Essentially, we are testing for a conditional effect to ascertain if different sets of countries in 

our sample respond differently to climatic variations.  We note, however, that parsing the sample into 

agrarian and non-agrarian countries assumes that any differences primarily occur through the 

agricultural production channel.  While we believe there are good theoretical reasons to make this 

assumption, this set of countries could also exhibit other common characteristics such as poverty and 

geographic region.  In the Appendix, we divide the sample by GDP per capita as well as Africa/non-

Africa and note that there is considerable overlap between these categories.  Ultimately, it is beyond 

the scope of this paper to ascertain if agricultural dependence is the primary channel through which 

results diverge and we leave this issue for future research. 

In total, the sample of agriculturally reliant countries contains 32 countries, which are 

disproportionally located in Africa (24) (all of which located in Sub-Saharan Africa, except Sudan).  

The rest is made of countries located in Asia (7), and in the Americas (1).  By contrast, the sample of 

countries less reliant on agriculture is made of 32 countries, 14 in Africa, 13 in Asia, 4 in Eastern 

Europe, and 1 in the Americas.  Because Models 3–4 did not reveal any evidence for a delayed impact 

of the SPEI on migration, we do not replicate the analysis for these two models. Interest readers may 
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consult the Appendix, which displays the full results of the split sample analysis including for 

specifications with lagged SPEI variables. 

[Table 2 about here] 

The results of Table 2 indicate that the drought effects reported earlier are primarily driven by 

agrarian countries.  The estimates of Model 5 suggest that a drought in an agrarian country reduces 

the number of migrants by about 21% on average [95% CI: –30.2%, –10.0%] (–0.5 SPEI).  Conversely, 

unusually wet conditions in the same country would on average increase migration by about 26% [95% 

CI: +11.0%, +43.3%] (+0.5 SPEI).  By contrast, Model 6 suggests that the effects of weather shocks 

of similar amplitudes in non-agrarian countries are more than twice as small, resulting for instance in 

a decrease in the number of irregular migration by about 8% ([95% CI: –15.0%, –0.6%] for a severe 

drought.  As before, the results of the quadratic specification suggest that the association between the 

SPEI and irregular migration is close to linear (see also Figure A.5 in the Appendix, which depicts the 

relative change in the level of observed irregular migration based on the specifications of Models 7–

8). 

To assess whether the difference between the coefficients for the SPEI are statistically 

significant, we re-estimated Models 5 and 6 in a seemingly unrelated regression.  The results of a 𝜒2 

test suggests that the two coefficients are effectively distinct (𝜒2=4.19, p-value = 0.041).  Nevertheless, 

this result should be approached cautiously, since the test assumes that the two estimates are 

statistically independent.2  Moreover, cross-validation indicate that the predictive performance of these 

models does not improve compared the null models of each sample. 

All in all, the empirical analysis provides evidence in support of Hypothesis 3 with the results 

showing a stronger association between the SPEI and migration in agrarian countries.  In this regard, 

 
2 Alternatively, we have also re-estimated this model using an interaction term between the agrarian dummy and the SPEI 
variable. While suggestive, the results call for caution when it comes to the moderating influence of agriculture reliance for 
labor (interaction term = 0.227, s.e. = 0.131, p-value=0.088). 
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our results diverge from previous findings, which have suggested that agrarian countries face an 

increased risk of migration as a result of higher temperatures (Marchiori et al. 2012, Cai et al. 2016).  

In general, our results do not support the view that dry weather conditions cause more people to 

migrate internationally.  To the contrary, drought can potentially dampen migration from agriculturally 

reliant countries, presumably by heightening existing financial barriers (Bazzi 2017). 

 

Could it be that particularly severe droughts might still induce people to leave at higher than usual rates? To examine 

this question, we replicate the previous split sample analyses, but replace the previous specifications 

with dummies for severe weather shocks.  We operationalize severe weather shocks as weather 

anomalies with SPEI values equal to or below the 10th percentile (severe drought), or equal to or above 

the 90th percentile (excess rainfall) of the distribution.  We present the results of these models in Table 

3.  We again find no evidence that particularly severe droughts force people to leave their country.  In 

fact, a severe drought in an agriculturally-dependent country of origin results in an immediate decrease 

in the number of unauthorized migrants by about 27% on average [95% CI: –43.8%, –4.8%]. The 

same model provides evidence that periods of unusually heavy rainfall increase the number of irregular 

migrants by about 45% on average [95% CI: +8.5%, +94.8%], suggesting that natural disasters 

associated with these events could influence migration rates. Although anecdotal, we note that our 

data capture the devastating floods that occurred in Ivory Coast in 2010 as wells the 2013 

Afghanistan/Pakistan floods lending credence to the claim that extreme values of the SPEI are related 

to flood damage (IFRC 2010, Reuters 2013).  While we do not find that drought influences migration 

in non-agrarian countries, excess levels of rainfall increase migration by about 17% on average [95% 

CI: +1.4%, +34.3%] (Model 10). 
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[Table 3 about here] 

While we have presented empirical evidence that drought may depress irregular migration 

from agrarian countries, there may be concerns that our findings may be driven by the 

operationalization of the dependent and independent variables, the choice of estimator and the criteria 

used for inclusion in the sample.  To assess the sensitivity of the findings to alternative specifications, 

we conduct a number of robustness checks (for the full results, see the Appendix).   

First, while our theoretical argument assume agriculture to be the primary channel linking 

weather shocks to migration, the operationalization of the SPEI does not specifically consider the 

crop-growing season. Hence, we replace the main SPEI variable with an alternate measure generated 

using only SPEI monthly values during the crop-growing season (S1).  Second, we re-estimate the 

models using a rate variable (the number of migrants per 100’000 inhabitants) to address concerns 

that our results may be driven by primarily large countries (S2).  Third, we assess the sensitivity of our 

results to an alternate estimator, a quasi-Poisson (Silva and Teynero 2006, 2011) (S3).  This is because 

about 7.6% of the observations in the sample record zero migration. Thus, adding unity before taking 

lags risks introducing bias in the estimated coefficient. 

In the fourth and fifth rounds, we examine whether the temporal resolution of at which the 

SPEI variable is operationalized may have influenced our results.  To do so, we first replicate the 

analysis using a SPEI measure computed at the quarterly level (instead of a 12-month measure) (S4).  

We then replicate again the analysis this time aggregating the migration flows to the annual level (S5).  

Sixth, we extend the sample to include all sending countries in the analysis, and not just those countries 

that sent a cumulative total of at least 100 migrants over the period 2009–2017, to address concerns 

that the findings may be influenced by selection bias (S6).  Seventh, endogeneity is a concern inasmuch 

as it is possible that the inclusion of lagged dependent variables may have affected the estimated SPEI 

parameters.  To address, this concern we replicate the analysis, but remove the lagged migration 
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variables (S7).  Eighth, by weighting the SPEI by population, the results could potentially be driven 

by the effects of shocks in urban areas, instead of rural areas.  Thus, we replace the population-

weighted SPEI measure by a simple average of the SPEI across the territory of a state (S8).  Ninth, 

we examine whether alternative measures of weather shocks show similar patterns. To do so, we 

replace the SPEI indicator with measures of precipitation and temperature anomalies from the long-

term norm (1970–2016) (S9). 

Next, we evaluate how the results are affected, when using GDP per capita (S10) or 

geographical location (African continent) (S11) to split the sample rather than agricultural dependence.  

Finally, in the last two rounds, we replace the dependent variable with an alternative version, which 

includes migration flows from the Balkans migration routes (S12), and use an estimator, which adjust 

standard errors for spatial correlation (Hsiang 2010) (S13).  To better convey the results of the 

sensitivity analysis, Figures 3–4 summarize the results of the nine first rounds by displaying the 

predicted change in migration caused by an increase/decrease of one standard deviation from zero on 

the SPEI scale based on the specifications of Model 1 and Models 5–6 (for the results of the last four 

robustness checks, see the appendix). 

[Figure 3 about here] 

[Figure 4 about here] 

In general, the results of the sensitivity analysis add confidence to our conclusion that the 

incidence of drought does not raise the level of irregular migration detected at EU external borders.  

If anything, the results provide additional support of the opposite association, particularly in agrarian 

countries: drought dampens the level of observed irregular migration.  Therefore, we conclude that 

while drought may either decrease, or have no effect on international migration to the EU, it does not 

increase it.  Finally, the sensitivity analysis provides additional evidence that wetter-than-usual 

conditions in countries reliant on agriculture may possibly raise the level of irregular migration, and to 
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a lesser extent for countries less reliant on agriculture.  Interestingly, while the results for precipitation 

anomalies reflect those of the SPEI, we note that our results tentatively suggest that higher than 

normal temperature in agrarian countries could increase emigration.  In the Appendix, we provide a 

discussion of the results of the sensitivity analysis. 

 

5. Conclusion 

 

In this paper, we have examined the association between weather variability and irregular migration 

to the EU over the period 2010-2015.  To do so, we have relied on Frontex data on unauthorized 

migration flows and a measure of soil moisture (the SPEI), which is explicitly designed to capture 

departures from normal weather conditions.  These new data sources add to the debate about climate 

and migration by providing different metrics to assess the relationship.  Overall, we can draw several 

conclusions.  First, in line with others (Findley 1994, Bohra-Mishra and Massey 2011, Bazzy 2017, 

Riosmena et al. 2018), we find no evidence that drought is associated with more emigration. If anything, 

the incidence of a drought tentatively reduces the immediate level of observed migration in countries, 

which are predominantly reliant on the agriculture sector.   

Second, our findings also provide support for a perspective which sees international migration 

as an investment.  Adverse weather conditions may increase financial barriers to migration, particularly 

in poor and agriculturally-reliant countries (see also Cattaneo et Peri 2016).  By contrast, wetter-than-

usual conditions are likely to lead to higher migration by increasing resources and income available to 

households.  Finally, our findings agree with recent studies, which suggest that sudden onset weather 

events, i.e., heavy rainfall, may be more strongly associated with migration, than gradual climate change 

processes, such as rising temperature and droughts (Koubi et al. 2016a, b).   
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Clearly, more research is warranted into the relationship between weather shocks, climate 

change, and migration.  By using data on apprehensions, we provide additional empirical evidence to 

the debate.  Border apprehensions are not a perfect indicator of emigration rates, but it offers 

advantages over other measures, such as legal migration or asylum applications.  We believe that the 

accumulation of evidence from alternative data choices, units of analysis, and estimation techniques, 

will provide a more complete picture regarding the effect of climatic variables on migration. 
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Table 1: Main Models 

 
Model 1 Model 2 Model 3 Model 4 

N Migr, ln (Q-1) 0.549** 0.548** 0.548** 0.547** 
 (0.04) (0.04) (0.04) (0.04) 
N Migr, ln (Q-2) -0.006 -0.007 -0.005 -0.006 
 (0.04) (0.04) (0.04) (0.04) 
N Migr, ln (Q-3) 0.106** 0.106** 0.109** 0.109** 
 (0.03) (0.03) (0.03) (0.03) 
N Migr, ln (Q-4) 0.028 0.029 0.032 0.032 
 (0.03) (0.03) (0.03) (0.03) 
SPEI (Y0) 0.304** 0.306** 0.279** 0.280** 
 (0.07) (0.07) (0.07) (0.07) 
SPEI2 (Y0)  0.053  0.060 
  (0.08)  (0.09) 
SPEI (Y-1)   -0.136 -0.135 
   (0.09) (0.09) 
SPEI2 (Y-1)    0.034 
    (0.12) 
SPEI (Y-2)   0.003 0.005 
   (0.09) (0.09) 
SPEI2 (Y-2)    0.020 
    (0.13) 
2nd quarter 0.840** 0.839** 0.838** 0.838** 
 (0.08) (0.08) (0.08) (0.08) 
3rd quarter 0.815** 0.815** 0.813** 0.813** 
 (0.07) (0.07) (0.07) (0.07) 
4th quarter 0.578** 0.577** 0.577** 0.577** 
 (0.07) (0.07) (0.07) (0.07) 
Constant 0.581** 0.573** 0.553** 0.536** 
 (0.11) (0.12) (0.11) (0.12) 

Cntr FE Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes 
AIC 3919.706 3921.428 3920.362 3925.957 
Joint F test (SPEI) 18.52** 12.06**  6.90**  4.73** 
CV rmse 1.279 1.285 1.260 1.267 
N 1536 1536 1536 1536 
N Countries 64 64 64 64 
Std. errors clustered by country. CV rmse null model: 1.232. 
+ p<0.10, * p<0.05, ** p<0.01  
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Table 2: Split sample models 

 
Model 5 Model 6 Model 7 Model 8 

 
High Agr. Low Agr. High Agr. Low Agri 

SPEI (Y0) 0.464** 0.169* 0.467** 0.171* 
 (0.12) (0.08) (0.12) (0.07) 
SPEI2 (Y0)   0.067 0.045 
   (0.11) (0.11) 

Cntr FE Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes 
Quarter dummies Yes Yes Yes Yes 
Lag migration variables Yes Yes Yes Yes 
AIC 2025.083 1895.390 2026.869 1897.286 
Joint F test (SPEI 13.81**  4.85*  8.48**  3.17+ 
CV rmse 1.478 1.112 1.487 1.115 
N 768 768 768 768 
N Countries 32 32 32 32 
Std. errors clustered by country. CV rmse null models: 1.377 (agrarian sample) and 1.092 (non-agrarian 
sample). 
+ p<0.10, * p<0.05, ** p<0.01  
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Table 3: Large Weather Shocks 

 
Model 9 Model 10 

 High Agr. Low Agr. 

Drought (Y0) -0.312* -0.063 
 (0.13) (0.12) 
Ex. rainfall (Y0) 0.375* 0.155* 
 (0.14) (0.07) 

Cntr FE Yes Yes 
Year FE Yes Yes 

Quarter dummies Yes Yes 
Lag migration variables Yes Yes 

AIC 2030.101 1898.267 

Joint F test  6.44**  2.91+ 

CV rmse 1.460 1.102 

N 768 768 

N Countries 32 32 
Std. errors clustered by country. CV rmse null models: 1.377 (agrarian sample)  
and 1.092 (non-agrarian sample) 

+ p<0.10, * p<0.05, ** p<0.01 
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Figure 1: Monthly irregular migration flow to the EU (2010–2015) 

The solid line displays the total number of migrants on a log scale, while the dashed line indicates the monthly number of migrants, of 
which the nationality is not specified in the Frontex data. The graph excludes the Western Balkan route and the Circular route from Albania 

to Greece (as well as the residual migration route). Note the log scale on the y axis. 
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Figure 2: Number of irregular migrants (2010–2015) 

The plot is based on Frontex data on the detection of irregular migrants between border-crossing points but exclude estimates from the Western Balkan route and the Circular Route from 
Albania to Greece, as well as the residual migration route. Countries depicted in in grey are EU member states, as well as Schengen-associated countries. Countries depicted in white are 
non-EU Balkan countries, as well as Ireland the United Kingdom, which are not part of the Schengen area. The map uses a Robison projection. 
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Figure 3: Results of the sensitivity analysis (Model 1) 

The plot depicts for each set of robustness checks the predicted change in average irregular migration for an increase/decrease of one 
standard deviation change on the SPEI scale (S1–S8), respectively for temperature and precipitation anomalies (S9) (based on the 
estimates of Model 1). The bars depict the 95% confidence interval. 
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Figure 4: Results of the sensitivity analysis (Models 5–6) 

The plot depicts for each set of robustness checks the predicted change in average irregular migration for an increase/decrease of one 
standard deviation change on the SPEI scale (S1–S8), respectively for temperature and precipitation anomalies (S9), disaggregated by 
agrarian versus non-agrarian countries (based on the estimates of Models 5–6). The bars depict the 95% confidence interval. 
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migration flows provided by Frontex. Next in Section A.2, we present summary statistics based on 
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A.1 Frontex data on irregular migration flows 
 

The Frontex data is available in a monthly format, starting in 2009. The data measures the 

number of irregular migrants apprehended at EU external borders. The counts are disaggregated by 

country of origin and migration route (and further divided by land and sea borders where applicable). 

There are eight migration routes in total: Western Africa, Western Mediterranean, Central Mediterranean, 

Eastern Mediterranean, Circular route from Albania to Greece, Western Balkans, Black Sea Route and Eastern 

Land Borders, as well as a residual migration route, but it registers less than 50 irregular migrants over 

the whole period up to the end of 2017. Because of a risk of double counting migrants, which may 

have been apprehended a first time while transiting on the Eastern Mediterranean route before 

continuing the journey towards Western Europe through the Balkans, we exclude the two Balkan 

migration routes from the sample, as well as the residual migration route. As a consequence, we also 

remove Balkan countries from the sample. In section A.4 (Tables A.37–39), we show the results of 

models including data from these two routes. If anything, the results are in substance similar to those 

presented in the main text. 

Figure A.1 plots the monthly rate of detection of irregular migrants for the eight largest 

sending countries in the sample (Syria, Afghanistan, Iraq, Eritrea, Nigeria, Pakistan, Somalia, Tunisia) 

between 2010 and 2015. As the data reveal, the so-called “2015 Migration Crisis” was driven by a steep 

increase in the detection of irregular migrants in just about three countries: Syria, Afghanistan and 

Iraq. 

Finally, Table A.1 provides for each country in the sample the aggregate number of irregular 

migrants detected at the EU external borders over the period 2010–2015, corresponding to the 

timeframe of the empirical analysis (along with the number of migrants, for which the nationality is 

unknown). The table excludes data from the migration routes going through the Balkans. 
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Figure A 1: Monthly number of irregular migrants for the 8 largest sending countries (2010–2015) 

The plot is based on Frontex data on the detection of irregular migrants between border-crossing points aggregated across all migration 
routes, except the Western Balkan Route and the Circular Route from Albania to Greece, as well as the residual migration route. Note the log 
scale on the y axis. 
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Table A 1: Number of irregular migrants by sending country, excluding Balkan countries (2010–2015)

Nationality N  

Syria 610,072 

Afghanistan 293,448 

Iraq 101,633 

Eritrea 90,764 

Pakistan 54,489 

Nigeria 42,324 

Somalia 41,933 

Tunisia 36,229 

Iran 26,185 

Bangladesh 25,248 

Algeria 25,067 

Morocco 23,770 

Mali 22,565 

Palestine 22,104 

Gambia 21,415 

Egypt 15,184 

Sudan 14,752 

Senegal 13,546 

Ghana 11,254 

Cote d'Ivoire 10,060 

Guinea 9,406 

Cameroon 5,772 

Central African Republic 5,477 

Congo, Rep 4,315 

Ethiopia 4,266 

Lebanon 2,661 

Burkina Faso 2,491 

Chad 2,345 

Georgia 2,338 

Libya 1,669 

India 1,666 

Guinea-Bissau 1,620 

Turkey 1,504 

Myanmar (Burma) 1,228 

Congo, DRC 1,217 

Vietnam 1,147 

Moldova 1,117 

Sierra Leone 1,110 

Dominican Republic 1,083 

Comoros 1,042 

Togo 995 

Sri Lanka 950 

Nationality N  

Ukraine 795 

Russia 744 

Benin 700 

Niger 664 

Yemen 524 

Mauritania 517 

Nepal 502 

Liberia 455 

Uganda 404 

China 400 

Dominica 366 

Rwanda 304 

Gabon 254 

Kenya 181 

Armenia 160 

Belarus 149 

Jordan 145 

Angola 139 

Mongolia 112 

Tanzania 111 

Equatorial Guinea 84 

Kuwait 79 

Laos 61 

Zimbabwe 58 

Malawi 48 

Uzbekistan 47 

Burundi 43 

Haiti 40 

Zambia 37 

South Africa 35 

Philippines 33 

North Korea 32 

Cuba 29 

Saudi Arabia 27 

Western Sahara 26 

Madagascar 25 

Kazakhstan 19 

Tajikistan 19 

Mauritius 18 

Colombia 16 

Azerbaijan 15 

Kyrgyzstan 15 
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Nationality N  

Israel 12 

South Sudan 12 

Jamaica 11 

Turkmenistan 11 

Ecuador 9 

Indonesia 9 

Djibouti 8 

Malaysia 6 

Bhutan  4 

United States 4 

Bolivia 3 

Botswana 3 

Brazil 3 

Namibia 3 

Oman 3 

Panama 3 

Peru 3 

Cape Verde 2 

Maldives 2 

Mozambique 2 

South Korea 2 

Thailand 2 

United Arab Emirates 2 

Venezuela 2 

Belize 1 

Cambodia 1 

Canada 1 

Kiribati 1 

Lesotho 1 

Mexico 1 

Papua New Guinea 1 

Taiwan 1 

Antigua & Barbuda 0 

Argentina 0 

Australia 0 

Bahamas 0 

Bahrain 0 

Barbados 0 

Brunei 0 

Chile 0 

Costa Rica 0 

El Salvador 0 

Eswatini 0 

Fiji 0 

Nationality N  

Grenada 0 

Grenada 0 

Guatemala 0 

Guatemala 0 

Guyana 0 

Guyana 0 

Honduras 0 

Honduras 0 

Japan 0 

Japan 0 

Marshall Islands 0 

Marshall Islands 0 

Micronesia 0 

Micronesia 0 

Palau 0 

Singapore 0 

Solomon Islands 0 

St. Kitts & Nevis 0 

St. Lucia 0 

St. Vincent & Grenadines 0 

Suriname 0 

Timor-Leste 0 

Tonga 0 

Trinidad & Tobago 0 

Tuvalu 0 

Uruguay 0 

Vanuatu 0 

Nationality not specified 49,344 

Total 1,615,366 
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A.2. Summary statistics 
 

Table A.2 presents summary statistics of the main variables included in the empirical analysis, 

as well as a number of additional variables from the sensitivity analysis.  The summary statistics are 

based on the sample of Table 1. Table A.3 then reports the correlation matrix between the population 

weighted SPEI variable and its two immediate lags and Figure A.2 shows a density plot of the SPEI 

variable, both based again on the sample for Table 1. 

 

Table A 2: Summary statistics — Table 1 sample 

 Obs Mean Std. deviation Min Max 

N Migr  1536 1004.69 9407.456 0 229987 

N Migr per 100K inhabitants (S2) 1520 6.061 55.763 0 1635.512 

SPEI, pop weighted 1536 -0.036 0.389 -1.460 1.437 

SPEI, pop weighted, growing season (S1) 1536 -0.045 0.426 -2.474 1.437 

SPEI, pop weighted, quarterly (S4) 1536 -0.039 0.650 -2.918 2.054 

SPEI, no weight (S7) 1536 -0.089 0.395 -1.593 1.433 

Temp anomalies (S9) 1536 0.073 0.697 -2.699 2.215 

Precip anomalies (S9) 1536 -0.069 0.932 -3.663 2.754 

 

 

Table A 3: Correlation matrix SPEI — Table 1 sample 

 SPEI (Y0) SPEI (Y-1) SPEI (Y-2) 

SPEI (Y0) 1   

SPEI (Y-1) 0.229 1  

SPEI (Y-2) 0.289 0.265 1 
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Figure A 2: Density plot SPEI — Table 1 sample 
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A.3 Additional analyses and complete results of Tables 2–3. 
 

Tables A.4 and A.5 present the full results of Tables 2 and 3 in the main text, including 

additional specifications testing for an association between lag SPEI variables (Year-1 and Year-2) 

and irregular migration. 

 

Table A 4: Full results — split sample models (Table 2, main models) 

 
Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 Model 12 

 
High Agr. Low Agr. High Agr. Low Agri High Agr. Low Agr. High Agr. Low Agri 

N Migr, ln (Q-1) 0.524** 0.564** 0.524** 0.564** 0.525** 0.562** 0.524** 0.561** 
 (0.05) (0.05) (0.05) (0.05) (0.05) (0.06) (0.05) (0.05) 
N Migr, ln (Q-2) -0.062 0.069+ -0.063 0.069+ -0.060 0.070+ -0.062 0.071+ 
 (0.05) (0.04) (0.05) (0.04) (0.05) (0.04) (0.05) (0.04) 
N Migr, ln (Q-3) 0.137** 0.061 0.136** 0.061 0.140** 0.063 0.140** 0.064 
 (0.03) (0.05) (0.03) (0.05) (0.04) (0.05) (0.04) (0.05) 
N Migr, ln (Q-4) 0.008 0.050 0.008 0.050 0.012 0.052 0.012 0.053 
 (0.03) (0.06) (0.03) (0.06) (0.04) (0.06) (0.04) (0.06) 
SPEI (Y0) 0.464** 0.169* 0.467** 0.171* 0.429** 0.158+ 0.421** 0.150+ 
 (0.12) (0.08) (0.12) (0.07) (0.13) (0.08) (0.14) (0.08) 
SPEI2 (Y0)   0.067 0.045   0.086 0.030 
   (0.11) (0.11)   (0.13) (0.11) 
SPEI (Y-1)     -0.159 -0.076 -0.171 -0.074 
     (0.16) (0.08) (0.16) (0.09) 
SPEI2 (Y-1)       0.049 -0.012 
       (0.23) (0.10) 
SPEI (Y-2)     -0.024 0.042 -0.041 0.038 
     (0.09) (0.15) (0.09) (0.15) 
SPEI2 (Y-2)       0.183 -0.128 
       (0.18) (0.20) 
2nd quarter 0.861** 0.824** 0.861** 0.823** 0.860** 0.823** 0.861** 0.822** 
 (0.11) (0.11) (0.11) (0.11) (0.11) (0.11) (0.11) (0.11) 
3rd quarter 0.796** 0.845** 0.796** 0.844** 0.791** 0.845** 0.792** 0.844** 
 (0.09) (0.11) (0.09) (0.11) (0.10) (0.11) (0.10) (0.11) 
4th quarter 0.654** 0.501** 0.654** 0.502** 0.650** 0.503** 0.650** 0.500** 
 (0.08) (0.11) (0.08) (0.11) (0.08) (0.11) (0.09) (0.11) 
Constant 0.719** 0.425* 0.714** 0.414+ 0.672** 0.415* 0.647** 0.440* 
 (0.13) (0.20) (0.14) (0.20) (0.13) (0.20) (0.14) (0.21) 

Cntr FE Yes Yes Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes Yes Yes 
AIC 2025.083 1895.390 2026.869 1897.286 2027.236 1898.461 2031.841 1903.259 
Joint F test (SPEI) 13.81**  4.85*  8.48**  3.17+  4.70**  2.54+  4.75**  1.65 
CV rmse 1.478 1.112 1.487 1.115 1.438 1.098 1.463 1.104 
N 768 768 768 768 768 768 768 768 
N Countries 32 32 32 32 32 32 32 32 
Std. errors clustered by country. CV rmse null models: 1.377 (agrarian sample) and 1.092 (non-agrarian sample). 
+ p<0.10, * p<0.05, ** p<0.01  
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Table A 5: Full results — split sample models (Table 3, main models) 

 
Model 13 Model 14 Model 15 Model 16 

 
High Agr. Low Agr. High Agr. Low Agr. 

N Migr, ln (Q-1) 0.532** 0.567** 0.527** 0.564** 
 (0.05) (0.05) (0.05) (0.05) 
N Migr, ln (Q-2) -0.060 0.069+ -0.063 0.078* 
 (0.05) (0.04) (0.05) (0.04) 
N Migr, ln (Q-3) 0.131** 0.061 0.138** 0.063 
 (0.04) (0.05) (0.04) (0.05) 
N Migr, ln (Q-4) 0.008 0.049 0.009 0.042 
 (0.04) (0.06) (0.04) (0.06) 
Drought (Y0) -0.312* -0.063 -0.267+ -0.103 
 (0.13) (0.12) (0.14) (0.12) 
Drought (Y-1)   0.230 -0.130 
   (0.16) (0.11) 
Drought (Y-2)   0.068 -0.246 
   (0.13) (0.15) 
Ex. rainfall (Y0) 0.375* 0.155* 0.366* 0.116* 
 (0.14) (0.07) (0.14) (0.05) 
Ex. rainfall (Y-1)   -0.055 -0.110 
   (0.13) (0.10) 
Ex. rainfall (Y-2)   0.134 -0.140 
   (0.12) (0.15) 
2nd quarter 0.872** 0.825** 0.867** 0.824** 
 (0.11) (0.12) (0.11) (0.11) 
3rd quarter 0.799** 0.836** 0.800** 0.846** 
 (0.09) (0.11) (0.10) (0.11) 
4th quarter 0.653** 0.492** 0.655** 0.502** 
 (0.08) (0.11) (0.09) (0.11) 
Constant 0.688** 0.405+ 0.655** 0.516* 
 (0.13) (0.20) (0.13) (0.19) 

Cntr FE Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes 

AIC 2030.101 1898.267 2034.026 1899.136 
Joint F test (SPEI)  6.44**  2.91+  3.46**  1.84 
CV rmse 1.460 1.102 1.470 1.111 
N 768 768 768 768 
N Countries 32 32 32 32 
Std. errors clustered by country. CV rmse null models: 1.377 (agrarian sample)  
and 1.092 (non-agrarian sample) 
+ p<0.10, * p<0.05, ** p<0.01 
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Figure A 3: Immediate effects of weather shocks on migration with 95% confidence interval (Model 2) 
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Figure A 4: Immediate and lag effects of weather shocks on migration with 95% confidence intervals (Model 4) 
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Figure A 5: Immediate effects of weather shocks on migration conditional on agriculture reliance with 95% confidence 
intervals (Models 7 and 8) 
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A.4 Sensitivity analysis 
 

To assess the sensitivity of the findings presented in the main text to alternative specifications, 

we conducted thirteenth different sets of robustness checks.  To do so, we reproduce each time the 

full results of the analysis (see Table 1 in the main text and Tables A.4–5 in Section A.3). In discussing 

the outcome of the sensitivity analysis, we mostly focus on the models with a single linear SPEI term 

(Models 1 and Models 5–6). Nonetheless, for reasons of consistency, we also replicate for each set of 

robustness checks the plots depicting the immediate effects of adverse weather shocks based on 

specifications including quadratic SPEI terms (see Figures A.3 and A.5). We discuss these plots in the 

text only when the results of models including quadratic terms markedly differ from linear models.  

As a word of caution, it is important to note from the outset that none of the models shown here 

indicate that including climate variables substantial improves the out-of-sample predictive ability, 

compared to a null model (see cross-validated root mean squared errors at the bottom of each table). 

Overall, this suggests —as we state in the paper— that it is very well possible that climatic variables 

may have no discernable effects on irregular migration towards the European Union. 

First, we replace the primary SPEI indicator with a measure of soil moisture generated using 

information from the SPEI dataset during the growing season (S1).  To do so, we draw on the PRIO-

GRID (v 2.0), which provides information on the main crop harvested in a given area, along with 

information on the starting and ending months of the growing season (Tollefsen et al. 2012).1  The 

data is provided at a raster resolution of 0.5 degree.  To compute the growing season SPEI, we proceed 

similarly as for the main SPEI variable, but restrict the aggregation process of the underlying monthly 

SPEI cells to only the months corresponding to the growing season for the maincrop in each cell.  

The correlation between the SPEI and its growing season variant is high (𝜌=0.89) over the period 2010-

2015.2  Tables A.6–7 present the results of this alternate specification (see also Figures A.6–7).  In line 

with the models presented in the main text, the results suggest that droughts reduce irregular migration 

to the EU, in particular for country highly reliant on the agricultural sector for labor, and for large 

weather shocks.  Regarding non-agrarian countries, the results are less clear-cut, but specifications 

 
1 The PRIO-GRID data on crop harvested area and the start and end dates of the growing season is provided by the 
MIRCA 2000 dataset (v 1.1.) (Portmann et al. 2010). The MIRCA 2000 dataset contains information on harvested area for 
26 irrigated and rainfed crops and growing season across the globe at a 5 arc-minutes resolution. 
2 The intra-panel coefficients of correlation drop below 0.8 in only nine countries out of 64 in the sample for Model 1. 
Among these, Ethiopia is the only major outlier with a coefficient of correlation between the SPEI and SPEI growing 
season variables equal to 0.39. 
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including a quadratic SPEI term would suggest that wetter-than-usual conditions are associated with 

higher migration (See Figure A.7). 

Second, we replicate the main analyses, but replace the dependent variable, measured in levels, 

by a rate variable, which measures the annual number of irregular migrants detected at EU external 

borders per 100,000 people in the country of origin (S2).3  As for the primary dependent variable, this 

alternative operationalization of the dependent variable is added to the model log-transformed.4  

Tables A.9–11 and Figures A.8–9 in the Appendix present the results using this alternate specification.5  

In general, the conclusions obtained in the main set of models are not altered by this new specification, 

although the estimated effects appear smaller in comparison to the results reported in the main text.   

Weather shocks in non-agrarian countries are not associated with irregular migration.  With regards 

to extreme events, we report tentative evidence consistent with the results of the main analysis (Table 

A.11). 

Next, Tables A.12–14 and Figures A.10–11 replicate the main sets of models but replace the 

log-linearization of the model with a (fixed-effects) quasi-Poisson (S3) (Silva and Teynero 2006, 2011).  

We add this specification, because there may be concerns that the presence of zeroes in the dependent 

variable, which forces us to add unity before taking the natural logarithm, is susceptible to introduce 

bias in the estimates. In general, we note that the number of observations with zero migration is low 

in our data (about 7.6% for the sample of Table 1). Under this specification, the dependent variable 

is included directly in the estimated model, without taking logs. The results reported tend to mirror 

those reported in the main analysis when it comes to water surpluses but differ somewhat with regards 

to the effects of drought. Models including only a linear SPEI term are generally consistent with the 

effects of drought reported in the main text. However, after the inclusion of a quadratic term, we no 

longer find evidence that the incidence of a drought immediately decreases out-migration (Figure 

A.10), in particular for countries highly reliant on agriculture (Figure A.11).6  Finally, the estimates of 

models for extreme weather events are generally not consistent with the results reported in prior 

models (Table A.14).  Nonetheless, the estimates indicate that unusually high water surpluses in an 

agrarian country correlate with an increase in the level of migration detected at EU borders. 

 
3 The population data is provided by the World Development Indicators (World Bank 2019). 
4 We add unit prior to the log transformation. 
5 Under this specification, the sample is reduced to 1’520 observations, because of missing population data for specific 
years in Eritrea. 
6 Compared to models presented in the main text, the results of a 𝜒2 test supports adding a quadratic term to the equation 
estimated by a quasi-Poisson regression both for the sample pooling together agrarian and non-agrarian countries (Table 
1 in the main text) and the sample of composed only of agrarian countries (Table 2 in the main text). 
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The next three sets of specifications examine the sensitivity to changes in the temporal 

resolution of the data and in the sample size. First, we replicate the main analysis, but use a SPEI 

measure based on the average 3-month SPEI in each quarter, instead of taking the average 3-month 

SPEI in the previous 12 months ending in the current quarter (S4) (Tables A.15–7, Figures A.12–13).7 

As expected, the data suggests that the dampening effect of a drought on irregular migration is initially 

close to zero and not statistically significant (for the contemporary quarterly measure), but then 

increases in magnitude in latter quarters and becomes significant (Table A.15). Depending on the set 

of countries considered, the effect peaks in the second quarter (3–5 months after the initial shock; 

non-agrarian countries) or the third quarter (6–8 months after the initial shock; agrarian countries) 

(see Table A.16). While it is difficult to speculate about the cause of this temporal discrepancy, we 

note that agrarian countries in the sample are located on average at a distance from the European 

Union twice as large in comparison to non-agrarian countries; thus requiring a longer journey.8 To 

shed light on the aggregate annual effect and compared them to those obtained in the main text, we 

have linearly combined the coefficients by calendar year.9  In general, the estimates for the annualized 

effects are of similar magnitude to those reported in the main text . For Model 1 (Table A.15), a severe 

drought (–0.75 quarterly SPEI) shock is predicted to dampen annual migration by about 20 %, while 

unusually wet conditions (+0.75 quarterly SPEI) would increase it by about 24%.10  For the split sample 

analysis, the corresponding predicted annual impacts for shocks of similar magnitude are –28% and 

+38% for agrarian countries (Model 5, Table A.16) and –12% and +14% for non-agrarian countries 

(Model 6, Table A.16).  As regards the estimates for models of extreme events, we find a similar 

immediate drought dampening effects, when linearly combining all the coefficients for the first year 

(Quarter 0 to Quarter –3), even though none of the quarterly coefficients are individually statistically 

significant (Table A.17).  In substantive terms, a severe drought reduces the number of migrants 

 
7 Compared to the main models, this specification requires the inclusion of a large number of lag quarterly SPEI measures. 
For the models examining only the immediate impact (over the same year) of the SPEI variable on irregular migration, 
this involves one contemporary term (for the same quarter) and three lagged quarterly SPEI measures (three prior 
quarters). For the models examining the same association over the past two years, this requires the inclusion of no less 
than twelves quarterly SPEI measures (four for each year). 
8 The average distance from the EU for agrarian countries in the sample of Model 1 is 2,860 km (std. deviation: 1,567 km), 
respectively 1,645 km for non-agrarian countries (std. deviation: 1,612 km). 
9 We similarly depict the total annual effects of the SPEI using specifications with quadratic terms in Figures A.12–13. 
10 Careful readers will note that the magnitude of the SPEI shocks used to predict migration do not match the magnitude 
of the shocks reported in the main text (similarly, Figures A.12–13 differ with regards the SPEI scale). This is the result of 
the shorter temporal window at which the quarterly SPEI measure is aggregated compared to the main indicator (i.e., at 
intervals of three months, instead of twelve). Thus, the quarterly SPEI exhibits more variations. However, the magnitude 
of the SPEI events spans the same interval, i.e., approximately the range extending from the 10th percentile to the 90th 
percentile of the variable. 
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detected at EU external borders by about 38%, everything else being equal (Model 13).11  Conversely, 

an excess level of rainfall increases the total annual level of migration by about 112 %. On the other 

hand, we find little evidence under this specification that large weather shocks affect irregular 

migration in non-agrarian countries. 

Second, we aggregate the migration data to the annual level, dropping the quarterly resolution 

(S5).  The sample is now reduced to 384 observations.  In general, the results, presented in Tables 

A.18–20 and Figures A.14–15 are in line with the results reported in the main analysis when it comes 

to the pooled analysis, but differ for the analysis separating agrarian from non-agrarian countries.  

Although the point estimate of the SPEI variable for agrarian countries is of similar magnitude as the 

one for non-agrarian countries, we note that it is not statistically significant (see Models 5–6, Table 

A.19).  By contrast, the results for extreme events are generally consistent with those reported in the 

main text (Table A.23). 

Third, in Tables A.21–23 and Figures A.16–17, we report the results of models estimated using 

the complete sample of countries of origin in the Frontex dataset, irrespective of whether these 

countries sent a cumulative total of at least 100 migrants over the period 2009–2017 (S6).  The new 

sample comprises 3,589 observations across 150 countries.12  As a result, the median share of labor 

employed in the agricultural sector amounts to 31.6%, compared to 47.2% in the sample for the main 

set of models.13  Under this specification, the estimates unambiguously indicate that the incidence of 

a drought results in an immediate decrease in the level of migration (Table A.21).  This effect is driven 

primarily by countries which are highly dependent on the agricultural sector (Table A.22).  Regarding 

extreme events, the results are similar to those reported in Table 3 (Table A.23). 

Because controlling for past migration levels in the four prior quarter may have introduced 

bias in the results reported, we replicate in the next robustness check the main analysis but exclude 

the controls for the migration levels in the four prior quarters from the estimated equation (S7).  The 

results, presented in Tables A.24–26 and Figures A.18–19, are in substance very similar to those 

reported in the main analysis, only of larger magnitude.14  

 
11 This effect is significant at the 90% confidence interval in Model 13, but not in Model 15. 
12 Extending the sample to include all countries results in the share of quarterly observations registering zero migrant rising 
to 53.6%.  
13 In this regard, we note that the median value of labor employed in agriculture used to split the sample in the main text 
is high (47.2%).  It results from the fact that countries, which have sent a cumulative total of at least 100 irregular migrants 
tend to be significantly more agrarian than those who did not. 
14 To ensure consistency between samples and enable the comparison of the results, we exclude observations for the year 
2009 from the sample for this set of sensitivity analysis. The data for 2009 was previously excluded because of the inclusion 
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While population-weighting ensures that sparsely populated or deserted areas have less 

influence on the computation of the country-level SPEI measure compared to (rural) areas, where 

population levels are substantially higher, it also has the adverse consequence that urban areas are 

permitted to have a large influence.  Given that we hypothesize that the effects of weather shocks are 

channeled through the agricultural sector, this represents a potential threat to our argument.  In 

addition, it is possible that population may choose to strategically locate in areas more resilient to 

climate shocks (see Hsiang and Jina 2014: 15 fn 12).  Hence, we assess the sensitivity of the empirical 

models to the operationalization rule of the SPEI, by generating an alternative measure taking a simple 

average of the annual SPEI across countries, instead of a population weighted measure (S8).  We 

present the results in Tables A.27–29 and Figures A.20–21.  In general, we find little evidence that the 

weighting scheme influence the findings of the main text reported in Tables 1–3.  Episodes of drought 

correlate with a decrease in irregular migration to the European Union.  This is not surprising given 

that the correlation coefficient between the population weighted SPEI and the simple average SPEI 

is about 0.89, reflecting spatial co-variance in weather patterns (based on the sample for Table 1 in the 

main text).  The only noticeable difference is that the coefficient for extreme water surpluses in non-

agrarian countries is no longer statistically significant (Table A.29). 

Next, we replace the main independent variable, SPEI, with two variables measuring annual 

anomalies in temperature and precipitation (S9).15  The results are presented in Table A.30–32 and 

Figures A.22–24. To do so, we use data provided by the Climate Research Unit (CRU TS series 3.25).16  

We generate the anomalies data in the same way as for the SPEI data.  We first take the average 

precipitation/temperature over the current quarter and the previous nine months and then take a 

population-weighted average over the entire country.  For each country, we subtract the long-term 

mean value from each quarterly temperature and precipitation realization and standardize over 1970-

2016 period (
𝑥𝑖𝑡𝑞−𝑥𝑖𝑞̅̅ ̅̅̅

𝜎𝑖𝑞
).17  To correct for trending in the variables measuring anomalies (i.e., due to 

climate change), we use the 10-year moving average for 𝑥̅.  Table A.30 reproduces Table 1.  We find 

 
of lagged migration variables for the four prior quarters in the estimated equation. Replicating the models with the Frontex 
data for 2009 does not substantively alter the results. 
15 Similarly, as for the main analysis, we estimate this set of a model on a sample extending from 2010 to 2015 to facilitate 
comparisons, even though CRU 3.25 data extends until 2016. Extending the analysis to 2016, however, does not 
appreciatively alter the results. 
16 The SPEI is based on the temperature and precipitation data from the Climate Research Unit (TS series 3.25).  It should 

be noted that the SPEI variable is highly correlated with precipitation anomalies (𝜌= 0.74). By contrast, it is only weakly 

correlated with temperature anomalies (𝜌 = –0.10) (based on sample for Model 1, Table 1 in the main text). 
17 The data for the CRU TS 3.25 extends until 2016. 
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little evidence that temperature anomalies correlate generally with the detection of irregular migrants 

at the EU external borders.  By contrast, and consistent with the results reported in the main text, we 

find that reduced levels of precipitation have a dampening effect on migration, and conversely for 

higher than usual levels of precipitation (see also Figures A.22).  When it comes to the analyses carried 

out on sub-samples (Table A.31), precipitation deficits and surpluses are again associated with a 

decrease, respectively an increase, in migration in agrarian countries (see also Figure A.24).  Regarding 

temperature anomalies, we find tentative evidence that higher temperature than usual is associated 

with more out-migration in countries highly reliant on the agricultural sector for labor (see also Figure 

A.23).18  The analysis of extreme events suggests a similar picture. The coefficients for high 

temperature and high levels of rainfall are both statistically significant in agrarian countries, and 

tentatively so for lower levels of rainfall (see Table A.32). 19  In light of the results reported for the 

SPEI and precipitation anomalies, the result for temperature anomalies in agrarian countries can be 

considered a puzzle. While it is hard to speculate about what lies behind this correlation, it is possible 

that it may hint at a distinct pathway through which higher temperature could potentially influence 

migration rates, for instance through an amenity mechanism (Marchiori et al. 2012: 356), or through 

a separate effect of heat on crop yields (Schlenker and Roberts 2009). 

The two next robustness checks examine the appropriateness of splitting the sample into 

groups of countries depending on their reliance on agriculture for labor.  To do so, we first replicate 

the split samples analyses (only Tables A.4 and A.5), but this time we divide the sample between rich 

and poor countries (S10).20  Tables A.33–34 present the results of this specification.  Albeit hinting at 

possibly larger impact of weather shocks in poorer countries, the results of the analyses are very similar 

in the two samples:  Drought exerts a dampening effect on migration in both samples, and conversely 

for periods of surpluses in the water balance (Table A.33, see also Figure A.25).  When it comes to 

extreme events, the results are again very similar in both samples, except for the coefficient for severe 

droughts, which is only significant in the sample of poorer countries.  Overall, we interpret these 

evidence as suggestive that if drought influences irregular migration to the European Union, this effect 

 
18 It should be noted that the SPEI variable is highly correlated with precipitation anomalies (𝜌= 0.74). By contrast, it is 

only weakly correlated with temperature anomalies (𝜌 = –0.08). At face values, this may indicate that the effect of 
temperature on migration is distinct from the effect of drought and excess water balance. 
19 In a similar way as the models using the SPEI, we define extreme weather events as precipitation and temperature 
anomalies below or equal to the 10th percentile, respectively above or equal to the 90th percentiles. 
20 The median GDP per capita at purchase power parity value in the sample is 3,816 USD at constant 2011 USD. Countries 
below the median are classified as poor. In general, the correlation between the share of agriculture in total employment 

and GDP per capita is moderate (𝜌 = –0.55). The GDP data is provided by the World Development Indicators (World 
Bank 2019). 
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is probably rather channeled by its impact on agriculture, proxied here by the share of labor employed 

in this sector. 

We next replicate again the analysis but split the sample into two alternate groups of countries, 

those located on the African continent, and those located elsewhere in the world (S11).  We do so 

because there may be unobserved factors specific to African countries, which could both heighten the 

impact of drought on societies (e.g., recurrence of armed conflict), and facilitate migration (e.g., such 

as established migration routes, large diasporas in European countries).  Compared to the sample of 

countries highly reliant on agriculture for labor (32 countries), the sample of Africa countries is made 

of 38 countries, of which 24 are classified as agrarian countries in Tables 2–3 of the main paper.  The 

results of this set of models are presented in Tables A.35–A.36.  In general, the results are very similar 

to those presented in Tables 2–3 of the main paper in both the size and statistical significance of the 

estimates (see also Figure A.26), despite the addition of 14 additional African countries and the 

removal of eight non-African countries highly reliant on agriculture for labor.  If anything, the SPEI 

coefficient for agrarian countries is slightly larger than the same coefficient for the sample made 

exclusively of African countries (compare the results of Model 1, Table 2 in the main text with the 

results reported in Model 1, Table A.35).  Overall, we believe that these results are indicative that the 

impact of weather shocks on irregular migration is probably primarily mediated through the impact 

of these shocks on the agricultural sector.  Yet, as we note in the main text, we cannot rule out, based 

on the evidence presented here, that the results we report in the main text are driven by some other 

unobserved characteristics of the sample specific to the African continent. 

Furthermore, there may be concerns that by excluding estimates from the Balkan migration 

routes, this may have influenced our results. Therefore, we replicate again the entire set of estimated 

models, but replace the dependent variable with an alternative operationalization, which includes as 

well the number of migrants from the previously excluded migration routes: The Western Balkan Route, 

the Circular Route from Albania to Greece and the residual “Other” migration route (S12).  In effect, we 

now run the analysis on a slightly larger sample (N=1694).  This is because, we compute the list of 

countries, which sent a cumulative toral of more than 100 migrants over the period 2009-2017, based 

on these new data.  Compared to the original sample, the new sample is composed of 71 countries, 

including six Balkans countries: Albania, Bosnia and Herzegovina, Croatia, Kosovo, Macedonia and 
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Serbia.21  The results, which are in general substantively similar, if less precisely estimated, to those 

reported in the main text, are presented in Tables A.37–39 and Figures A.27–28.  Nevertheless, we 

remain wary of drawing any inference from these data, due to two major limitations a) the risk of 

double counting migrants (for a discussion, see Section 3.1 of the main text) and b) the large number 

of migrants for whom nationality is unspecified on the Western Balkan Migration Route in late 2015. 

Indeed, including this route in the data significantly increases the share of unspecified nationality, as 

border agencies in Hungary, and elsewhere, essentially stopped recording the nationality of migrants 

in late 2015 (the share of unspecified nationality of migrants reaches 50% in November 2015). 

In a final set of models, we correct the estimates of standard errors to account for potential 

spatial correlation in the errors across panels (S13).  To do so, we use the procedure developed by 

Hsiang (2010, see also Conley 1999, 2008) to adjust standard errors for spatial and serial correlation 

in OLS.  Standard errors are adjusted for spatial correlation between countries whose population-

weighted centroids lie within 1,000 kilometers of each others (together with lag length of 2 for serial 

autocorrelation).22  The results of these specifications are presented in Tables A.40–42 and Figures 

A.39–30.  In general, adjusting for spatial autocorrelation in the errors does not affect the conclusion 

of the empirical analysis.23,24 

  

 
21 Croatia is only part of the sample until the end of the second quarter of 2013. After its admission to the European Union 
on July 1st 2013, it is removed from the sample. In addition to the Balkan countries, Cuba is now also part of the sample, 
as it has sent a cumulative total of more than 100 migrants across all migration routes over the period 2009–2017. 
22 The lag of order 2 was chosen based on existing practices in the literature. In effect, it is based on the fourth root of the 
total number of periods (241/4) (see Greene 2018: 999). In line with the weighting scheme of the gridded SPEI data, we 
compute population-weighted centroids of countries, instead of area-weighted centroids. 
23 We have considered different distance cutoffs (from 100 km to 2,000 km), but these do not appear to have much effect 
on the estimated standard errors. 
24 We do not show cross-validated RMSE in Tables A.40–42, since these are by definition identical to those shown in 
Tables 1–3 in the main text and Tables A.4–5 in the appendix. 
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Table A 6: Main Models — SPEI growing season 

 
Model 1 Model 2 Model 3 Model 4 

N Migr, ln (Q-1) 0.552** 0.549** 0.549** 0.546** 
 (0.04) (0.04) (0.04) (0.04) 
N Migr, ln (Q-2) -0.004 -0.005 -0.002 -0.003 
 (0.04) (0.04) (0.04) (0.04) 
N Migr, ln (Q-3) 0.109** 0.110** 0.113** 0.113** 
 (0.03) (0.03) (0.03) (0.03) 
N Migr, ln (Q-4) 0.027 0.029 0.031 0.032 
 (0.03) (0.03) (0.03) (0.03) 
SPEI (Y0) 0.250** 0.285** 0.225** 0.260** 
 (0.08) (0.06) (0.08) (0.07) 
SPEI2 (Y0)  0.150**  0.147** 
  (0.05)  (0.05) 
SPEI (Y-1)   -0.165* -0.163* 
   (0.08) (0.08) 
SPEI2 (Y-1)    -0.010 
    (0.09) 
SPEI (Y-2)   0.014 0.021 
   (0.08) (0.07) 
SPEI2 (Y-2)    -0.006 
    (0.11) 
2nd quarter 0.841** 0.840** 0.839** 0.837** 
 (0.08) (0.08) (0.08) (0.08) 
3rd quarter 0.817** 0.817** 0.813** 0.813** 
 (0.07) (0.07) (0.07) (0.07) 
4th quarter 0.579** 0.580** 0.576** 0.577** 
 (0.07) (0.07) (0.07) (0.07) 
Constant 0.556** 0.534** 0.531** 0.512** 
 (0.12) (0.12) (0.12) (0.12) 

Cntr FE Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes 
AIC 3922.409 3919.558 3919.829 3921.046 
Joint F test (SPEI) 10.41** 13.83**  7.21**  7.33** 
CV rmse 1.250 1.259 1.230 1.238 
N 1536 1536 1536 1536 
N Countries 64 64 64 64 
Std errors clustered by country. CV rmse null model: 1.232 
+ p<0.10, * p<0.05, ** p<0.01  
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Table A 7: Split sample models — SPEI growing season 

 
Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 Model 12 

 
High Agr. Low Agr. High Agr. Low Agri High Agr. Low Agr. High Agr. Low Agri 

N Migr, ln (Q-1) 0.527** 0.568** 0.524** 0.561** 0.526** 0.564** 0.523** 0.557** 
 (0.05) (0.05) (0.05) (0.05) (0.05) (0.06) (0.05) (0.05) 
N Migr, ln (Q-2) -0.059 0.072+ -0.060 0.069+ -0.056 0.073+ -0.057 0.071+ 
 (0.05) (0.04) (0.05) (0.04) (0.05) (0.04) (0.05) (0.04) 
N Migr, ln (Q-3) 0.142** 0.062 0.142** 0.064 0.146** 0.065 0.146** 0.068 
 (0.03) (0.05) (0.03) (0.05) (0.04) (0.05) (0.04) (0.05) 
N Migr, ln (Q-4) 0.007 0.049 0.008 0.053 0.012 0.051 0.013 0.056 
 (0.04) (0.06) (0.04) (0.06) (0.04) (0.06) (0.04) (0.06) 
SPEI (Y0) 0.359* 0.133 0.404** 0.162+ 0.328* 0.117 0.368** 0.144 
 (0.13) (0.09) (0.10) (0.08) (0.14) (0.10) (0.10) (0.09) 
SPEI2 (Y0)   0.142** 0.222   0.143** 0.196 
   (0.04) (0.15)   (0.04) (0.13) 
SPEI (Y-1)     -0.186 -0.104 -0.183 -0.119 
     (0.14) (0.09) (0.12) (0.09) 
SPEI2 (Y-1)       0.038 -0.082 
       (0.12) (0.10) 
SPEI (Y-2)     -0.041 0.078 -0.054 0.062 
     (0.06) (0.13) (0.06) (0.13) 
SPEI2 (Y-2)       0.170 -0.142 
       (0.12) (0.15) 
2nd quarter 0.861** 0.826** 0.863** 0.820** 0.858** 0.824** 0.867** 0.815** 
 (0.11) (0.11) (0.11) (0.11) (0.11) (0.12) (0.12) (0.11) 
3rd quarter 0.795** 0.846** 0.798** 0.842** 0.786** 0.847** 0.795** 0.839** 
 (0.09) (0.11) (0.09) (0.11) (0.10) (0.11) (0.10) (0.11) 
4th quarter 0.656** 0.501** 0.655** 0.505** 0.647** 0.504** 0.649** 0.500** 
 (0.08) (0.11) (0.08) (0.11) (0.09) (0.11) (0.09) (0.11) 
Constant 0.691** 0.405+ 0.673** 0.371+ 0.647** 0.400+ 0.596** 0.428+ 
 (0.13) (0.21) (0.14) (0.21) (0.12) (0.21) (0.14) (0.22) 

Cntr FE Yes Yes Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes Yes Yes 
AIC 2026.853 1896.570 2025.681 1896.103 2027.083 1898.258 2029.109 1899.586 
Joint F test (SPEI)  7.09*  2.18 14.54**  2.82+  6.14**  2.44+  6.51**  4.54** 
CV rmse 1.435 1.100 1.446 1.110 1.390 1.084 1.413 1.096 
N 768 768 768 768 768 768 768 768 
N Countries 32 32 32 32 32 32 32 32 
Std errors clustered by country. CV rmse null models: 1.377 (agrarian sample) and 1.092 (non-agrarian sample). 
+ p<0.10, * p<0.05, ** p<0.01  
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Table A 8: Large Weather Shocks — SPEI growing season 

 
Model 13 Model 14 Model 15 Model 16 

 High Agr. Low Agr. High Agr. Low Agr. 

N Migr, ln (Q-1) 0.524** 0.569** 0.524** 0.565** 
 (0.05) (0.05) (0.05) (0.05) 
N Migr, ln (Q-2) -0.057 0.073+ -0.053 0.078* 
 (0.05) (0.04) (0.05) (0.04) 
N Migr, ln (Q-3) 0.137** 0.061 0.144** 0.063 
 (0.03) (0.05) (0.03) (0.05) 
N Migr, ln (Q-4) 0.004 0.050 0.009 0.050 
 (0.04) (0.06) (0.04) (0.06) 
Drought (Y0) -0.317* -0.115 -0.281+ -0.133+ 
 (0.14) (0.08) (0.15) (0.08) 
Drought (Y-1)   0.146 -0.015 
   (0.20) (0.12) 
Drought (Y-2)   0.171 -0.304+ 
   (0.14) (0.16) 
Ex. rainfall (Y0) 0.439** 0.067 0.397** 0.029 
 (0.12) (0.09) (0.12) (0.10) 
Ex. rainfall (Y-1)   -0.207 -0.098 
   (0.13) (0.11) 
Ex. rainfall (Y-2)   0.005 -0.113 
   (0.11) (0.17) 
2nd quarter 0.867** 0.826** 0.863** 0.814** 
 (0.11) (0.12) (0.11) (0.11) 
3rd quarter 0.805** 0.843** 0.806** 0.839** 
 (0.10) (0.11) (0.10) (0.11) 
4th quarter 0.649** 0.496** 0.652** 0.496** 
 (0.08) (0.11) (0.09) (0.11) 
Constant 0.670** 0.401+ 0.623** 0.501* 
 (0.12) (0.20) (0.13) (0.23) 

Cntr FE Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes 

AIC 2024.214 1899.332 2026.706 1899.338 
Joint F test (SPEI) 10.20**  1.23  5.94**  1.87 
CV rmse 1.453 1.081 1.403 1.089 
AIC 2024.214 1899.332 2026.706 1899.338 
N Countries 32 32 32 32 
Std errors clustered by country. CV rmse null models: 1.377 (agrarian sample)  
and 1.092 (non-agrarian sample). 
+ p<0.10, * p<0.05, ** p<0.01  
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Figure A 6: SPEI growing season — Immediate effects of weather shocks on migration with 95% confidence interval 
(Model 2, Table A.6). 

 

 

Figure A 7: SPEI growing season — Immediate effects of weather shocks on migration conditional on agriculture 
reliance with 95% confidence interval (Model 7 and 8, Table A.7)   
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Table A 9: Main Models — N Migrants per 100,000 inhabitants 

 
Model 1 Model 2 Model 3 Model 4 

N Migr, ln (Q-1) 0.764** 0.760** 0.760** 0.753** 
 (0.06) (0.06) (0.06) (0.06) 
N Migr, ln (Q-2) -0.172* -0.174* -0.170* -0.169* 
 (0.07) (0.07) (0.07) (0.07) 
N Migr, ln (Q-3) 0.125 0.124 0.130 0.128 
 (0.09) (0.09) (0.09) (0.09) 
N Migr, ln (Q-4) 0.083 0.085 0.089 0.097 
 (0.06) (0.06) (0.06) (0.06) 
SPEI (Y0) 0.098* 0.101** 0.088* 0.097* 
 (0.04) (0.04) (0.04) (0.04) 
SPEI2 (Y0)  0.063  0.051 
  (0.05)  (0.04) 
SPEI (Y-1)   -0.067 -0.066 
   (0.05) (0.05) 
SPEI2 (Y-1)    -0.109 
    (0.11) 
SPEI (Y-2)   0.069 0.076 
   (0.05) (0.05) 
SPEI2 (Y-2)    -0.045 
    (0.06) 
2nd quarter 0.251** 0.250** 0.251** 0.248** 
 (0.04) (0.04) (0.04) (0.04) 
3rd quarter 0.182** 0.182** 0.183** 0.180** 
 (0.03) (0.03) (0.03) (0.03) 
4th quarter 0.088* 0.089* 0.090* 0.088* 
 (0.04) (0.04) (0.04) (0.04) 
Constant -0.012 -0.022 -0.019 -0.001 
 (0.05) (0.05) (0.05) (0.05) 

Cntr FE Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes 
AIC 1583.519 1583.804 1577.943 1576.171 
Joint F test (SPEI)  6.15*  4.16*  2.42+  2.36* 
CV rmse 0.363 0.369 0.365 0.363 
N 1520 1520 1520 1520 
N Countries 64 64 64 64 
Std. errors clustered by country. CV rmse null model: 0.353 
+ p<0.10, * p<0.05, ** p<0.01  
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Table A 10: Split sample models — N Migrants per 100,000 inhabitants 

 
Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 Model 12 

 
High Agr. Low Agr. High Agr. Low Agri High Agr. Low Agr. High Agr. Low Agri 

N Migr, ln (Q-1) 0.691** 0.821** 0.673** 0.820** 0.690** 0.813** 0.664** 0.810** 
 (0.05) (0.11) (0.05) (0.11) (0.05) (0.11) (0.06) (0.11) 
N Migr, ln (Q-2) -0.204** -0.140 -0.211** -0.140 -0.199** -0.137 -0.203** -0.135 
 (0.05) (0.14) (0.05) (0.14) (0.05) (0.14) (0.05) (0.14) 
N Migr, ln (Q-3) 0.169** 0.042 0.163** 0.042 0.175** 0.042 0.170** 0.041 
 (0.03) (0.19) (0.03) (0.19) (0.03) (0.19) (0.03) (0.19) 
N Migr, ln (Q-4) 0.000 0.192 0.003 0.192 0.008 0.195 0.029 0.197 
 (0.02) (0.12) (0.02) (0.12) (0.02) (0.12) (0.04) (0.12) 
SPEI (Y0) 0.200* 0.037 0.214* 0.038 0.176* 0.039 0.208* 0.033 
 (0.09) (0.04) (0.09) (0.04) (0.08) (0.04) (0.10) (0.04) 
SPEI2 (Y0)   0.192* 0.014   0.170* 0.008 
   (0.09) (0.05)   (0.08) (0.05) 
SPEI (Y-1)     -0.102 -0.014 -0.097 -0.013 
     (0.09) (0.04) (0.08) (0.04) 
SPEI2 (Y-1)       -0.186 -0.008 
       (0.20) (0.05) 
SPEI (Y-2)     0.020 0.085 0.022 0.082 
     (0.05) (0.06) (0.06) (0.06) 
SPEI2 (Y-2)       0.052 -0.092 
       (0.08) (0.08) 
2nd quarter 0.267** 0.239** 0.266** 0.239** 0.266** 0.239** 0.262** 0.239** 
 (0.06) (0.04) (0.06) (0.04) (0.06) (0.04) (0.06) (0.04) 
3rd quarter 0.180** 0.179** 0.181** 0.178** 0.178** 0.180** 0.178** 0.180** 
 (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) 
4th quarter 0.130* 0.045 0.129* 0.045 0.128* 0.049 0.131* 0.046 
 (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) 
Constant 0.047 -0.056 0.031 -0.059 0.029 -0.051 0.024 -0.026 
 (0.06) (0.06) (0.06) (0.06) (0.05) (0.05) (0.07) (0.06) 

Cntr FE Yes Yes Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes Yes Yes 
AIC 865.432 682.388 860.543 684.342 865.618 682.112 857.818 685.320 
Joint F test (SPEI)  4.50*  0.84  3.04+  0.68  1.58  1.19  2.86*  1.19 
CV rmse 0.445 0.333 0.466 0.333 0.434 0.336 0.454 0.338 
N 752 768 752 768 752 768 752 768 
N Countries 32 32 32 32 32 32 32 32 
Std errors clustered by country. CV rmse null models: 0.415 (agrarian sample) and 0.329 (non-agrarian sample). 
+ p<0.10, * p<0.05, ** p<0.01  
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Table A 11: Large weather shocks — N Migrants per 100,000 inhabitants 

 
Model 13 Model 14 Model 15 Model 16 

 
High Agr. Low Agr. High Agr. Low Agr. 

N Migr, ln (Q-1) 0.693** 0.822** 0.687** 0.811** 
 (0.05) (0.11) (0.05) (0.10) 
N Migr, ln (Q-2) -0.200** -0.141 -0.205** -0.132 
 (0.05) (0.14) (0.05) (0.14) 
N Migr, ln (Q-3) 0.166** 0.042 0.175** 0.040 
 (0.03) (0.19) (0.03) (0.18) 
N Migr, ln (Q-4) 0.001 0.192 0.010 0.190 
 (0.02) (0.12) (0.02) (0.12) 
Drought (Y0) -0.092+ 0.010 -0.082+ -0.013 
 (0.05) (0.06) (0.04) (0.06) 
Drought (Y-1)   0.035 -0.069 
   (0.05) (0.06) 
Drought (Y-2)   0.017 -0.192* 
   (0.08) (0.08) 
Ex. rainfall (Y0) 0.214+ 0.043 0.209+ 0.031 
 (0.12) (0.03) (0.11) (0.03) 
Ex. rainfall (Y-1)   -0.122 0.002 
   (0.08) (0.04) 
Ex. rainfall (Y-2)   0.075 -0.039 
   (0.08) (0.06) 
2nd quarter 0.271** 0.240** 0.266** 0.239** 
 (0.06) (0.04) (0.06) (0.04) 
3rd quarter 0.183** 0.177** 0.180** 0.178** 
 (0.04) (0.04) (0.04) (0.04) 
4th quarter 0.131* 0.042 0.131* 0.047 
 (0.05) (0.05) (0.05) (0.05) 
Constant 0.028 -0.064 0.019 -0.005 
 (0.05) (0.06) (0.05) (0.06) 

Cntr FE Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes 

AIC 866.861 684.375 868.433 679.970 
Joint F test (SPEI)  2.12  1.34  1.80  1.39 
CV rmse 0.445 0.332 0.443 0.342 
N 752 768 752 768 
N Countries 32 32 32 32 
Std errors clustered by country. CV rmse null models: 0.415 (agrarian sample)  
and 0.329 (non-agrarian sample). 
+ p<0.10, * p<0.05, ** p<0.01 
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Figure A 8: Number of migrants per 100,000 inhabitants — Immediate effects of weather shocks on migration 
(Model 2, Table A.9) 

 
 

 

Figure A 9: Number of migrants per 100,000 inhabitants — Immediate effects of weather shocks on migration 
conditional on agri. reliance (Models 7 and 8, Table A.11)  
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Table A 12: Main models — Quasi-Poisson 

 
Model 1 Model 2 Model 3 Model 4 

N Migr, ln (Q-1) 0.630** 0.610** 0.642** 0.596** 
 (0.09) (0.09) (0.10) (0.10) 
N Migr, ln (Q-2) -0.081 -0.099 -0.087 -0.104 
 (0.10) (0.09) (0.10) (0.09) 
N Migr, ln (Q-3) 0.126 0.110 0.110 0.100 
 (0.18) (0.18) (0.17) (0.17) 
N Migr, ln (Q-4) 0.093 0.156 0.101 0.158 
 (0.14) (0.15) (0.14) (0.15) 
SPEI (Y0) 0.170 0.264 0.018 0.242 
 (0.28) (0.20) (0.26) (0.24) 
SPEI2 (Y0)  0.875*  0.740+ 
  (0.43)  (0.41) 
SPEI (Y-1)   -0.283 -0.453+ 
   (0.22) (0.24) 
SPEI2 (Y-1)    -0.467+ 
    (0.27) 
SPEI (Y-2)   0.362+ 0.188 
   (0.19) (0.21) 
SPEI2 (Y-2)    -0.443 
    (0.36) 
2nd quarter 1.134** 1.018** 1.135** 1.016** 
 (0.31) (0.32) (0.33) (0.34) 
3rd quarter 1.072** 0.945* 1.042** 0.935* 
 (0.40) (0.41) (0.40) (0.42) 
4th quarter 0.739* 0.663+ 0.775* 0.675+ 
 (0.35) (0.34) (0.34) (0.36) 

Cntr FE Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes 
Joint chi2 test (SPEI)  0.38  4.50 12.28** 46.17** 
CV rmse 6164.208 6198.004 6207.225 6146.084 
N 1536 1536 1536 1536 
N Countries 64 64 64 64 
Heteroskedasticity robust std. errors. CV rmse null model: 5845.168 
+ p<0.10, * p<0.05, ** p<0.01  
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Table A 13: Split sample models — Quasi-Poisson 

 
Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 Model 12 

 
High Agr. Low Agr. High Agr. Low Agri High Agr. Low Agr. High Agr. Low Agri 

N Migr, ln (Q-1) 0.744** 0.628** 0.630** 0.618** 0.686** 0.606** 0.602** 0.592** 
(0.17) (0.11) (0.11) (0.11) (0.13) (0.11) (0.10) (0.12) 

N Migr, ln (Q-2) -0.352** -0.031 -0.294** -0.044 -0.312** -0.018 -0.257** -0.037 
(0.12) (0.05) (0.08) (0.05) (0.09) (0.04) (0.07) (0.05) 

N Migr, ln (Q-3) 0.436* -0.040 0.366** -0.045 0.363** -0.053 0.302** -0.073 
(0.18) (0.14) (0.13) (0.15) (0.10) (0.14) (0.08) (0.12) 

N Migr, ln (Q-4) -0.152* 0.244 -0.056* 0.278 -0.102+ 0.246 -0.022 0.289 
(0.06) (0.21) (0.02) (0.23) (0.06) (0.21) (0.05) (0.23) 

SPEI (Y0) 0.914** -0.234 0.770** -0.099 0.811** -0.262 0.679** 0.065 
 (0.23) (0.23) (0.21) (0.21) (0.18) (0.24) (0.21) (0.24) 
SPEI2 (Y0)   1.770** 0.539   1.764** 0.242 
   (0.42) (0.62)   (0.49) (0.55) 
SPEI (Y-1)     -0.813* 0.099 -0.670** 0.042 
     (0.35) (0.19) (0.21) (0.20) 
SPEI2 (Y-1)       0.429 -0.098 
       (0.66) (0.46) 
SPEI (Y-2)     -0.037 0.469* -0.151 0.309 
     (0.17) (0.24) (0.19) (0.24) 
SPEI2 (Y-2)       0.842** -0.999* 
       (0.30) (0.47) 
2nd quart. 1.521** 0.902+ 1.407** 0.822 1.513** 0.916 1.442** 0.832 
 (0.21) (0.53) (0.17) (0.56) (0.18) (0.56) (0.16) (0.61) 
3rd quart. 0.768** 1.038+ 0.747** 0.972 0.810** 1.028 0.816** 0.977 
 (0.17) (0.63) (0.14) (0.66) (0.19) (0.66) (0.17) (0.70) 
4th quart. 1.170** 0.410 0.943** 0.402 1.126** 0.507 0.916** 0.410 
 (0.32) (0.46) (0.24) (0.46) (0.29) (0.48) (0.24) (0.54) 

Cntr FE Yes Yes Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes Yes Yes 
Joint chi2 test (SPEI) 15.74**  1.01 78.16**  1.32 205.81**  4.63 203.00** 51.37** 
CV rmse 6151.055 6130.395 6228.762 6162.172 6186.825 6204.672 6227.337 6165.344 
N 768 768 768 768 768 768 768 768 
N Country 32 32 32 32 32 32 32 32 
Heteroskedasticity robust std. errors. CV rmse null models: 5930.408 (agrarian sample) and 5818.323 (non-agrarian sample). 

+ p<0.10, * p<0.05, ** p<0.01  
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Table A 14: Large weather shocks — Quasi-Poisson 

 
Model 13 Model 14 Model 15 Model 16 

 
High Agr. Low Agr. High Agr. Low Agr. 

N Migr, ln (Q-1) 0.656** 0.635** 0.580** 0.541** 
 (0.12) (0.11) (0.12) (0.10) 
N Migr, ln (Q-2) -0.252** -0.050 -0.197** -0.019 
 (0.09) (0.05) (0.07) (0.08) 
N Migr, ln (Q-3) 0.324** -0.048 0.289** -0.022 
 (0.12) (0.14) (0.07) (0.11) 
N Migr, ln (Q-4) -0.071 0.258 -0.025 0.265 
 (0.05) (0.22) (0.08) (0.19) 
Drought (Y0) 0.277 0.308 0.283 0.130 
 (0.32) (0.27) (0.28) (0.15) 
Drought (Y-1)   0.587* -0.542** 
   (0.27) (0.20) 
Drought (Y-2)   0.141 -1.085** 
   (0.11) (0.28) 
Ex. rainfall (Y0) 0.823** -0.380* 0.741** -0.078 
 (0.16) (0.17) (0.13) (0.25) 
Ex. rainfall (Y-1)   -0.228 0.014 
   (0.36) (0.23) 
Ex. rainfall (Y-2)   0.321** -0.318 
   (0.12) (0.37) 
2nd quarter 1.436** 0.889 1.382** 0.779 
 (0.17) (0.55) (0.10) (0.50) 
3rd quarter 0.665** 1.056+ 0.682** 0.769 
 (0.13) (0.64) (0.14) (0.71) 
4th quarter 0.954** 0.434 0.966** 0.274 
 (0.23) (0.46) (0.21) (0.54) 

Cntr FE Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes 

Joint chi2 test (SPEI) 25.74**  5.57+ 164.15** 83.48** 
CV rmse 6178.990 6119.864 6240.213 6162.154 

N 768 768 768 768 
N Countries 32 32 32 32 
Heteroskedasticity robust std. errors. CV rmse null models: 5930.408 (agrarian sample)  
and 5818.323 (non-agrarian sample). 
+ p<0.10, * p<0.05, ** p<0.01  
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Figure A 10: Quasi-Poisson — Immediate effects of weather shocks on migration (Model 2, Table A.12) 

Note the wider scale of the y axis. 

 
 

 

Figure A 11: Quasi-Poisson — Immediate effects of weather shocks on migration conditional on agriculture reliance 
(Models 7 and 8, Table A.13) 

Note the wider scale of the y axis. 
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Table A 15: Main models — Quarterly SPEI Measure 

 Model 1 Model 2 Model 3 Model 4 

SPEI (Q0) 0.007 0.005 0.004 0.002 
 (0.04) (0.04) (0.04) (0.04) 
SPEI2 (Q0)  0.021  0.031 
  (0.04)  (0.04) 
SPEI (Q-1) 0.113* 0.115* 0.105* 0.109* 
 (0.04) (0.05) (0.04) (0.04) 
SPEI2 (Q-1)  0.017  0.015 
  (0.05)  (0.05) 
SPEI (Q-2) 0.082+ 0.086* 0.074+ 0.073+ 
 (0.04) (0.04) (0.04) (0.04) 
SPEI2 (Q-2)  0.054  0.060+ 
  (0.03)  (0.03) 
SPEI (Q-3) 0.090* 0.093* 0.080* 0.081* 
 (0.04) (0.04) (0.03) (0.04) 
SPEI2 (Q-3)  0.025  0.036 
  (0.03)  (0.03) 
SPEI (Q-4)   -0.009 -0.004 
   (0.04) (0.04) 
SPEI2 (Q-4)    0.005 
    (0.04) 
SPEI (Q-5)   -0.047 -0.040 
   (0.04) (0.04) 
SPEI2 (Q-5)    0.056+ 
    (0.03) 
SPEI (Q-6)   -0.047 -0.050 
   (0.04) (0.04) 
SPEI2 (Q-6)    0.050 
    (0.03) 
SPEI (Q-7)   -0.031 -0.028 
   (0.05) (0.04) 
SPEI2 (Q-7)    -0.020 
    (0.04) 
SPEI (Q-8)   0.032 0.040 
   (0.04) (0.04) 
SPEI2 (Q-8)    0.035 
    (0.04) 
SPEI (Q-9)   -0.045 -0.046 
   (0.04) (0.04) 
SPEI2 (Q-9)    0.015 
    (0.04) 
SPEI (Q-10)   -0.007 -0.001 
   (0.04) (0.04) 
SPEI2 (Q-10)    -0.034 
    (0.04) 
SPEI (Q-11)   0.040 0.043 
   (0.04) (0.04) 
SPEI2 (Q-11)    0.024 
    (0.03) 

Cntr FE Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes 
AIC 3921.665 3926.612 3930.546 3945.066 
Joint F test (SPEI)  5.77**  4.34**  2.45*  3.15** 
CV rmse 1.281 1.292 1.262 1.291 
N 1536 1536 1536 1536 
N Countries 64 64 64 64 

Std. errors clustered by country. CV rmse null model: 1.232 
Constant, lag migration variables and quarterly dummies omitted from the table. 
+ p<0.10, * p<0.05, ** p<0.01 
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Table A 16: Split sample models — Quarterly SPEI Measure 

 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 Model 12 
 High Agr. Low Agr. High Agr. Low Agri High Agr. Low Agr. High Agr. Low Agr. 

SPEI (Q0) 0.041 -0.010 0.036 -0.010 0.045 -0.009 0.050 -0.017 
 (0.06) (0.06) (0.06) (0.06) (0.06) (0.06) (0.06) (0.07) 
SPEI2 (Q0)   0.013 0.030   0.015 0.030 
   (0.05) (0.06)   (0.05) (0.06) 
SPEI (Q-1) 0.101+ 0.121+ 0.105+ 0.121+ 0.087 0.110 0.083 0.122+ 
 (0.06) (0.07) (0.06) (0.07) (0.06) (0.07) (0.05) (0.07) 
SPEI2 (Q-1)   0.003 0.024   0.013 0.013 
   (0.08) (0.06)   (0.07) (0.06) 
SPEI (Q-2) 0.191* -0.021 0.194** -0.018 0.183* -0.023 0.172* -0.029 
 (0.07) (0.05) (0.07) (0.05) (0.08) (0.05) (0.08) (0.05) 
SPEI2 (Q-2)   0.100** 0.010   0.086* 0.022 
   (0.03) (0.05)   (0.03) (0.06) 
SPEI (Q-3) 0.098+ 0.081 0.100+ 0.088+ 0.084+ 0.079 0.094* 0.087+ 
 (0.05) (0.05) (0.05) (0.05) (0.04) (0.05) (0.04) (0.05) 
SPEI2 (Q-3)   -0.006 0.065   -0.001 0.070 
   (0.04) (0.05)   (0.04) (0.05) 
SPEI (Q-4)     -0.009 0.005 0.011 -0.000 
     (0.07) (0.06) (0.07) (0.06) 
SPEI2 (Q-4)       0.075 -0.050 
       (0.06) (0.05) 
SPEI (Q-5)     -0.103 0.004 -0.095 0.017 
     (0.07) (0.04) (0.07) (0.04) 
SPEI2 (Q-5)       0.035 0.086* 
       (0.05) (0.04) 
SPEI (Q-6)     0.058 -0.115* 0.046 -0.121* 
     (0.07) (0.05) (0.06) (0.04) 
SPEI2 (Q-6)       0.100* -0.005 
       (0.04) (0.05) 
SPEI (Q-7)     -0.108 0.027 -0.091 0.021 
     (0.08) (0.06) (0.07) (0.05) 
SPEI2 (Q-7)       -0.020 -0.016 
       (0.06) (0.06) 
SPEI (Q-8)     0.042 0.049 0.043 0.056 
     (0.05) (0.06) (0.05) (0.06) 
SPEI2 (Q-8)       0.071 0.001 
       (0.06) (0.06) 
SPEI (Q-9)     -0.059 -0.033 -0.058 -0.041 
     (0.06) (0.06) (0.05) (0.07) 
SPEI2 (Q-9)       0.029 -0.003 
       (0.07) (0.05) 
SPEI (Q-10)     0.005 -0.019 0.028 -0.016 
     (0.05) (0.06) (0.06) (0.06) 
SPEI2 (Q-10)       -0.073 -0.021 
       (0.07) (0.05) 
SPEI (Q-11)     0.026 0.053 0.040 0.060 
     (0.06) (0.05) (0.07) (0.05) 
SPEI2 (Q-11)       -0.016 0.064 
       (0.06) (0.05) 

Cntr FE Yes Yes Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes Yes Yes 
AIC 2027.486 1897.196 2032.062 1903.397 2037.005 1904.636 2039.557 1911.250 
Joint F test (SPEI)  5.14**  1.82  3.44**  1.53  2.43*  2.88**  6.50**  3.96** 
CV rmse 1.467 1.127 1.487 1.128 1.442 1.109 1.511 1.131 
N 768 768 768 768 768 768 768 768 
N Countries 32 32 32 32 32 32 32 32 

Std. errors clustered by country. CV rmse null models: 1.377 (agrarian sample) and 1.092 (non-agrarian sample). 
Constant, lag migration variables and quarterly dummies omitted from the table.  
+ p<0.10, * p<0.05, ** p<0.01  
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Table A 17: Large Weather Shocks— Quarterly SPEI Measure 

 Model 13 Model 14 Model 15 Model 16 
 

High Agr. Low Agr. High Agr. Low Agr. 

Drought (Q0) -0.100 -0.033 -0.068 -0.017 
 (0.11) (0.13) (0.12) (0.13) 
Drought (Q-1) -0.172 -0.136 -0.151 -0.140 
 (0.12) (0.11) (0.13) (0.12) 
Drought (Q-2) -0.071 -0.100 -0.055 -0.071 
 (0.13) (0.09) (0.13) (0.10) 
Drought (Q-3) -0.132 0.013 -0.120 0.022 
 (0.12) (0.10) (0.12) (0.11) 
Drought (Q-4)   0.210 -0.062 
   (0.20) (0.13) 
Drought (Q-5)   0.075 0.076 
   (0.12) (0.10) 
Drought (Q-6)   0.157 0.205+ 
   (0.12) (0.11) 
Drought (Q-7)   0.082 -0.052 
   (0.12) (0.13) 
Drought (Q-8)   0.094 0.020 
   (0.11) (0.12) 
Drought (Q-9)   0.102 0.031 
   (0.18) (0.10) 
Drought (Q-10)   0.067 0.014 
   (0.21) (0.11) 
Drought (Q-11)   -0.014 0.172 
   (0.12) (0.10) 
Ex. rainfall (Q0) 0.193* 0.063 0.167+ 0.070 
 (0.09) (0.11) (0.10) (0.10) 
Ex. rainfall (Q-1) 0.017 0.012 0.006 0.013 
 (0.16) (0.11) (0.16) (0.11) 
Ex. rainfall (Q-2) 0.484** -0.120 0.431** -0.128 
 (0.14) (0.10) (0.15) (0.10) 
Ex. rainfall (Q-3) 0.057 0.151 0.043 0.152 
 (0.13) (0.09) (0.13) (0.10) 
Ex. rainfall (Q-4)   -0.093 -0.069 
   (0.14) (0.11) 
Ex. rainfall (Q-5)   -0.165 0.106 
   (0.12) (0.10) 
Ex. rainfall (Q-6)   0.021 -0.172+ 
   (0.12) (0.09) 
Ex. rainfall (Q-7)   -0.157 0.103 
   (0.14) (0.10) 
Ex. rainfall (Q-8)   0.043 0.000 
   (0.13) (0.12) 
Ex. rainfall (Q-9)   -0.018 -0.086 
   (0.13) (0.08) 
Ex. rainfall (Q-10)   -0.083 -0.059 
   (0.11) (0.11) 
Ex. rainfall (Q-11)   0.031 0.189 
   (0.11) (0.12) 

Cntr FE Yes Yes Yes Yes 
Year Fe Yes Yes Yes Yes 
AIC 2034.614 1905.372 2046.404 1909.082 
Joint F test (SPEI)  4.30**  1.29  2.66**  6.88** 
CV rmse 1.490 1.105 1.460 1.116 
N 768 768 768 768 
N Countries 32 32 32 32 

Std errors clustered by country. CV rmse null models: 1.377 (agrarian sample) and 1.092 (non-agrarian sample). 
Constant, lag migration variables and quarterly dummies omitted from the table. 
+ p<0.10, * p<0.05, ** p<0.01 
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Figure A 12: Quarterly SPEI measure — Immediate effects of weather shocks on migration (Model 2, Table A.15) 

Quarterly coefficients have been linearly combined to produce annual estimates. 

 

 

 

Figure A 13: Quarterly SPEI measure — Immediate effects of weather shocks on migration conditional on agri. 
reliance (Models 7 and 8, Table A.16)  

Quarterly coefficients have been linearly combined to produce annual estimates.  



38 

Table A 18: Main models — Country-year analysis 

 
Model 1 Model 2 Model 3 Model 4 

N Migr, ln (Y-1) 0.326** 0.327** 0.316** 0.311** 
 (0.06) (0.06) (0.06) (0.06) 
SPEI (Y0) 0.423* 0.442* 0.439* 0.472* 
 (0.19) (0.18) (0.19) (0.18) 
SPEI2 (Y0)  0.300  0.336 
  (0.29)  (0.31) 
SPEI (Y-1)   0.200 0.199 
   (0.16) (0.15) 
SPEI2 (Y-1)    0.235 
    (0.21) 
SPEI (Y-2)   -0.116 -0.076 
   (0.17) (0.16) 
SPEI2 (Y-2)    0.230 
    (0.21) 
Constant 3.204** 3.130** 3.267** 3.149** 
 (0.31) (0.32) (0.30) (0.31) 

Cntr FE Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes 
AIC 1013.888 1013.928 1015.272 1018.026 
Joint F test (SPEI)  4.85*  3.87*  2.77*  2.52* 
CV rmse 2.897 2.907 2.954 3.012 
N 384 384 384 384 
N Countries 64 64 64 64 
Std. errors clustered by country. CV rmse null model: 2.826 
+ p<0.10, * p<0.05, ** p<0.01  
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Table A 19: Split sample models — Country-year analysis 

 
Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 Model 12 

 
High Agr. Low Agr. High Agr. Low Agri High Agr. Low Agr. High Agr. Low Agri 

N Migr, ln (Y-1) 0.258** 0.415** 0.258** 0.420** 0.239** 0.406** 0.238** 0.416** 
 (0.07) (0.11) (0.07) (0.11) (0.07) (0.11) (0.07) (0.11) 
SPEI (Y0) 0.473 0.467* 0.474 0.461* 0.531 0.468* 0.488 0.514* 
 (0.32) (0.23) (0.35) (0.22) (0.34) (0.23) (0.36) (0.24) 
SPEI2 (Y0)   0.002 0.672   0.118 0.624 
   (0.48) (0.45)   (0.51) (0.49) 
SPEI (Y-1)     0.277 0.142 0.294 0.166 
     (0.25) (0.23) (0.22) (0.22) 
SPEI2 (Y-1)       0.541* -0.311 
       (0.26) (0.37) 
SPEI (Y-2)     -0.024 -0.177 -0.034 -0.099 
     (0.27) (0.21) (0.25) (0.22) 
SPEI2 (Y-2)       0.102 0.284 
       (0.30) (0.36) 
Constant 3.442** 2.837** 3.442** 2.592** 3.573** 2.867** 3.496** 2.599** 
 (0.31) (0.57) (0.31) (0.58) (0.33) (0.57) (0.35) (0.57) 

Cntr FE Yes Yes Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes Yes Yes 
AIC 524.996 493.404 526.996 491.726 527.439 496.005 530.270 496.728 
Joint F test (SPEI)  2.19  4.30*  1.25  7.25**  0.95  2.79+  3.73**  2.87* 
CV rmse 3.214 2.627 3.151 2.615 3.234 2.587 3.312 2.647 
N 192 192 192 192 192 192 192 192 
N Countries 32 32 32 32 32 32 32 32 
Std. errors clustered by country. CV rmse null models: 2.956 (agrarian sample) and 2.588 (non-agrarian sample). 
+ p<0.10, * p<0.05, ** p<0.01  
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Table A 20: Large weather shocks — Country-year analysis 

 
Model 13 Model 14 Model 15 Model 16 

 High Agr. Low Agr. High Agr. Low Agr. 

N Migr, ln (Y-1) 0.240** 0.419** 0.222** 0.418** 
 (0.07) (0.11) (0.07) (0.10) 
Drought (Y0) -0.745* 0.225 -0.658+ 0.185 
 (0.27) (0.40) (0.35) (0.41) 
Drought (Y-1)   0.266 -0.678 
   (0.35) (0.44) 
Drought (Y-2)   0.270 -0.172 
   (0.33) (0.34) 
Ex. rainfall (Y0) 0.520 0.333* 0.651 0.436* 
 (0.42) (0.15) (0.44) (0.20) 
Ex. rainfall (Y-1)   0.595+ 0.079 
   (0.31) (0.23) 
Ex. rainfall (Y-2)   0.245 0.111 
   (0.32) (0.34) 
Constant 3.513** 2.708** 3.528** 2.786** 
 (0.30) (0.59) (0.31) (0.54) 

Cntr FE Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes 

AIC 520.972 498.607 523.614 501.194 
Joint F test (SPEI)  4.46*  2.41  2.57*  1.25 
CV rmse 3.279 2.596 3.366 2.658 
N 192 192 192 192 
N Countries 32 32 32 32 
Std. errors clustered by country: 2.956 (agrarian sample) and 2.588 (non-agrarian sample). 
+ p<0.10, * p<0.05, ** p<0.01  
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Figure A 14: Country-year analysis — Immediate effects of weather shocks on migration (Model 2, Table A.18)  

 

 

 

Figure A 15: Country-year analysis — Immediate effects of weather shocks on migration conditional on agriculture 
reliance (Models 7and 8, Table A.19) 
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Table A 21: Main models — All observations 

 
Model 1 Model 2 Model 3 Model 4 

N Migr, ln (Q-1) 0.541** 0.541** 0.541** 0.540** 
 (0.03) (0.03) (0.03) (0.03) 
N Migr, ln (Q-2) 0.005 0.005 0.006 0.006 
 (0.03) (0.03) (0.03) (0.03) 
N Migr, ln (Q-3) 0.091** 0.091** 0.092** 0.093** 
 (0.03) (0.03) (0.03) (0.03) 
N Migr, ln (Q-4) 0.049+ 0.049+ 0.050+ 0.050+ 
 (0.03) (0.03) (0.03) (0.03) 
SPEI (Y0) 0.121** 0.121** 0.122** 0.119** 
 (0.03) (0.03) (0.03) (0.03) 
SPEI2 (Y0)  0.007  0.009 
  (0.04)  (0.04) 
SPEI (Y-1)   -0.033 -0.038 
   (0.04) (0.04) 
SPEI2 (Y-1)    0.052 
    (0.05) 
SPEI (Y-2)   0.045 0.046 
   (0.04) (0.04) 
SPEI2 (Y-2)    0.020 
    (0.04) 
2nd quarter 0.371** 0.371** 0.371** 0.372** 
 (0.05) (0.05) (0.05) (0.05) 
3rd quarter 0.394** 0.394** 0.394** 0.396** 
 (0.04) (0.04) (0.04) (0.04) 
4th quarter 0.251** 0.251** 0.251** 0.253** 
 (0.04) (0.04) (0.04) (0.04) 
Constant 0.249** 0.248** 0.244** 0.228** 
 (0.06) (0.06) (0.06) (0.06) 

Cntr FE Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes 
AIC 7235.570 7237.543 7234.799 7239.146 
Joint F test (SPEI) 18.22**  9.55**  6.73**  5.05** 
CV rmse 0.996 0.996 0.996 0.996 
N 3589 3589 3588 3588 
N Countries 150 150 150 150 
Std. errors clustered by country. CV rmse null model: 0.987 
+ p<0.10, * p<0.05, ** p<0.01  
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Table A 22: Split sample models — All observations 

 
Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 Model 12 

 
High Agr. Low Agr. High Agr. Low Agri High Agr. Low Agr. High Agr. Low Agri 

N Migr, ln (Q-1) 0.537** 0.529** 0.537** 0.528** 0.536** 0.528** 0.536** 0.527** 
 (0.04) (0.06) (0.04) (0.06) (0.04) (0.06) (0.04) (0.06) 
N Migr, ln (Q-2) -0.028 0.060 -0.028 0.061 -0.027 0.061 -0.027 0.062 
 (0.04) (0.05) (0.04) (0.05) (0.04) (0.05) (0.04) (0.05) 
N Migr, ln (Q-3) 0.118** 0.050 0.118** 0.051 0.120** 0.050 0.120** 0.052 
 (0.03) (0.05) (0.03) (0.05) (0.03) (0.05) (0.03) (0.05) 
N Migr, ln (Q-4) 0.018 0.119+ 0.018 0.120+ 0.020 0.118+ 0.020 0.120* 
 (0.03) (0.06) (0.03) (0.06) (0.03) (0.06) (0.03) (0.06) 
SPEI (Y0) 0.240** 0.037 0.241** 0.031 0.232** 0.042+ 0.231** 0.034 
 (0.05) (0.02) (0.05) (0.03) (0.05) (0.02) (0.05) (0.03) 
SPEI2 (Y0)   -0.004 0.048   0.009 0.047 
   (0.06) (0.05)   (0.06) (0.05) 
SPEI (Y-1)     -0.075 0.024 -0.080 0.028 
     (0.07) (0.03) (0.07) (0.04) 
SPEI2 (Y-1)       0.032 0.032 
       (0.09) (0.05) 
SPEI (Y-2)     0.062 0.034 0.051 0.043 
     (0.05) (0.05) (0.05) (0.05) 
SPEI2 (Y-2)       0.071 -0.053 
       (0.07) (0.06) 
2nd quarter 0.492** 0.236** 0.492** 0.237** 0.491** 0.237** 0.491** 0.237** 
 (0.07) (0.06) (0.07) (0.06) (0.07) (0.06) (0.07) (0.06) 
3rd quarter 0.470** 0.302** 0.470** 0.304** 0.469** 0.303** 0.470** 0.304** 
 (0.06) (0.06) (0.06) (0.06) (0.06) (0.06) (0.06) (0.06) 
4th quarter 0.366** 0.134** 0.366** 0.136** 0.365** 0.134** 0.364** 0.136** 
 (0.06) (0.04) (0.06) (0.04) (0.06) (0.04) (0.06) (0.04) 
Constant 0.348** 0.140 0.348** 0.128 0.333** 0.143 0.320** 0.139 
 (0.08) (0.11) (0.08) (0.11) (0.08) (0.11) (0.09) (0.10) 

Cntr FE Yes Yes Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes Yes Yes 
AIC 4263.442 2785.507 4265.439 2786.586 4262.948 2788.435 4267.828 2791.587 
Joint F test (SPEI) 19.54**  2.17  9.73**  2.73+  7.21**  1.12  4.50**  1.85 
CV rmse 1.088 0.916 1.089 0.911 1.079 0.911 1.085 0.918 
N 1920 1656 1920 1656 1920 1656 1920 1656 
N Countries 80 69 80 69 80 69 80 69 
Std. errors clustered by country. CV rmse null models: 1.059 (agrarian sample) and 0.893 (non-agrarian sample). 
+ p<0.10, * p<0.05, ** p<0.01  
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Table A 23: Large weather shocks — All observations 

 
Model 13 Model 14 Model 15 Model 16 

 High Agr. Low Agr. High Agr. Low Agr. 

N Migr, ln (Q-1) 0.540** 0.528** 0.538** 0.526** 
 (0.04) (0.06) (0.04) (0.06) 
N Migr, ln (Q-2) -0.026 0.062 -0.027 0.065 
 (0.04) (0.05) (0.04) (0.05) 
N Migr, ln (Q-3) 0.114** 0.050 0.116** 0.049 
 (0.03) (0.05) (0.03) (0.05) 
N Migr, ln (Q-4) 0.019 0.120+ 0.021 0.120+ 
 (0.03) (0.06) (0.03) (0.06) 
Drought (Y0) -0.193** 0.016 -0.182** 0.003 
 (0.06) (0.05) (0.07) (0.05) 
Drought (Y-1)   0.092 -0.049 
   (0.08) (0.06) 
Drought (Y-2)   0.025 -0.078 
   (0.07) (0.06) 
Ex. rainfall (Y0) 0.194** 0.082* 0.204** 0.086* 
 (0.06) (0.03) (0.06) (0.03) 
Ex. rainfall (Y-1)   -0.022 0.006 
   (0.05) (0.03) 
Ex. rainfall (Y-2)   0.129* 0.018 
   (0.06) (0.08) 
2nd quarter 0.492** 0.237** 0.494** 0.234** 
 (0.07) (0.06) (0.07) (0.06) 
3rd quarter 0.467** 0.304** 0.468** 0.301** 
 (0.06) (0.06) (0.06) (0.06) 
4th quarter 0.357** 0.135** 0.356** 0.131** 
 (0.06) (0.04) (0.06) (0.04) 
Constant 0.348** 0.124 0.326** 0.147 
 (0.08) (0.11) (0.08) (0.10) 

Cntr FE Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes 

AIC 4269.053 2785.909 4270.445 2790.463 
Joint F test (SPEI)  9.20**  2.84+  4.28**  1.29 
CV rmse 1.080 0.915 1.083 0.909 
N 1920 1656 1920 1656 
N Countries 80 69 80 69 
Std. errors clustered by country. CV rmse null models: 1.059 (agrarian sample)  
and 0.893 (non-agrarian sample). 
+ p<0.10, * p<0.05, ** p<0.01  
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Figure A 16: All observations — Immediate and lag effects of weather shocks on migration (Model 2, Table A.21). 

 

 

 

Figure A 17: All observations — Immediate and lag effects of weather shocks on migration conditional on agriculture 
reliance (Models 7 and 8, Table A.22)  
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Table A 24: Main models — No lagged migration variables 

 
Model 1 Model 2 Model 3 Model 4 

SPEI (Y0) 0.570** 0.577** 0.565** 0.566** 
 (0.16) (0.15) (0.17) (0.16) 
SPEI2 (Y0)  0.214  0.261 
  (0.21)  (0.21) 
SPEI (Y-1)   0.015 0.007 
   (0.17) (0.17) 
SPEI2 (Y-1)    0.200 
    (0.20) 
SPEI (Y-2)   -0.119 -0.113 
   (0.17) (0.17) 
SPEI2 (Y-2)    0.242 
    (0.18) 
2nd quarter 0.648** 0.648** 0.648** 0.650** 
 (0.06) (0.06) (0.06) (0.06) 
3rd quarter 0.962** 0.962** 0.960** 0.965** 
 (0.08) (0.08) (0.08) (0.08) 
4th quarter 0.837** 0.835** 0.834** 0.838** 
 (0.06) (0.06) (0.06) (0.06) 
Constant 2.534** 2.496** 2.533** 2.407** 
 (0.16) (0.16) (0.16) (0.18) 

Cntr FE Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes 
AIC 4626.032 4625.177 4628.150 4626.165 
Joint F test (SPEI) 13.22**  7.36**  5.49**  5.21** 
CV rmse 3.142 3.150 3.136 3.160 
N 1536 1536 1536 1536 
N Countries 64 64 64 64 
Std. errors clustered by country. CV rmse null models: 3.133. 
+ p<0.10, * p<0.05, ** p<0.01  
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Table A 25: Split sample models — No lagged migration variables 

 
Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 Model 12 

 
High Agr. Low Agr. High Agr. Low Agri High Agr. Low Agr. High Agr. Low Agri 

SPEI (Y0) 0.816** 0.361* 0.824** 0.364* 0.838** 0.337+ 0.821** 0.330+ 
 (0.26) (0.16) (0.24) (0.16) (0.26) (0.18) (0.26) (0.18) 
SPEI2 (Y0)   0.303 0.060   0.365 0.063 
   (0.27) (0.24)   (0.26) (0.27) 
SPEI (Y-1)     0.138 -0.095 0.114 -0.087 
     (0.26) (0.24) (0.25) (0.25) 
SPEI2 (Y-1)       0.106 0.134 
       (0.30) (0.30) 
SPEI (Y-2)     -0.054 -0.163 -0.073 -0.166 
     (0.20) (0.28) (0.19) (0.29) 
SPEI2 (Y-2)       0.376 -0.040 
       (0.26) (0.25) 
2nd quarter 0.681** 0.616** 0.683** 0.615** 0.680** 0.616** 0.687** 0.616** 
 (0.10) (0.08) (0.10) (0.08) (0.10) (0.08) (0.10) (0.08) 
3rd quarter 0.970** 0.952** 0.971** 0.951** 0.970** 0.949** 0.977** 0.952** 
 (0.11) (0.11) (0.11) (0.11) (0.11) (0.11) (0.11) (0.11) 
4th quarter 0.871** 0.798** 0.866** 0.798** 0.872** 0.793** 0.866** 0.797** 
 (0.07) (0.10) (0.07) (0.10) (0.07) (0.10) (0.07) (0.11) 
Constant 2.339** 2.740** 2.298** 2.726** 2.357** 2.727** 2.253** 2.694** 
 (0.23) (0.22) (0.23) (0.22) (0.24) (0.21) (0.23) (0.29) 

Cntr FE Yes Yes Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes Yes Yes 
AIC 2315.487 2301.331 2314.504 2303.223 2318.078 2303.435 2317.434 2308.642 
Joint F test (SPEI)  9.99**  5.00*  6.09**  3.50*  3.58*  3.34*  8.74**  2.27+ 
CV rmse 3.155 3.145 3.170 3.143 3.163 3.123 3.210 3.130 
N 768 768 768 768 768 768 768 768 
N Countries 32 32 32 32 32 32 32 32 
Std. errors clustered by country. CV rmse null models: 3.109 (agrarian sample) and 3.141 (non-agrarian sample). 
+ p<0.10, * p<0.05, ** p<0.01  
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Table A 26: Large weather shocks — No lagged migration variables 

 
Model 13 Model 14 Model 15 Model 16 

 High Agr. Low Agr. High Agr. Low Agr. 

Drought (Y0) -0.521* -0.166 -0.465* -0.209 
 (0.19) (0.23) (0.21) (0.24) 
Drought (Y-1)   0.329 -0.179 
   (0.28) (0.19) 
Drought (Y-2)   0.470** -0.207 
   (0.16) (0.33) 
Ex. rainfall (Y0) 0.646* 0.246* 0.636* 0.214* 
 (0.28) (0.11) (0.27) (0.10) 
Ex. rainfall (Y-1)   0.120 -0.032 
   (0.20) (0.21) 
Ex. rainfall (Y-2)   0.251 -0.198 
   (0.23) (0.19) 
2nd quarter 0.689** 0.613** 0.695** 0.608** 
 (0.09) (0.08) (0.10) (0.08) 
3rd quarter 0.975** 0.936** 0.988** 0.932** 
 (0.11) (0.11) (0.11) (0.11) 
4th quarter 0.878** 0.784** 0.874** 0.785** 
 (0.06) (0.10) (0.07) (0.10) 
Constant 2.300** 2.734** 2.237** 2.841** 
 (0.23) (0.22) (0.22) (0.26) 

Cntr FE Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes 

AIC 2326.293 2307.797 2322.717 2311.097 
Joint F test (SPEI)  5.43**  3.59*  3.74**  2.10+ 
CV rmse 3.149 3.136 3.191 3.137 
N 768 768 768 768 
N Countries 32 32 32 32 
Std. errors clustered by country. CV rmse null models: 3.109 (agrarian sample)  
and 3.141 (non-agrarian sample). 
+ p<0.10, * p<0.05, ** p<0.01  
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Figure A 18: No lagged migration variables — Immediate effects of weather shocks on migration (Model 2, Table 
A.24) 

Note the wider scale of the y axis. 

 

  

Figure A 19: No lagged migration variables — Immediate effects of weather shocks on migration conditional on 
agriculture reliance (Models 7 and 8, Table A.25) 

Note the wider scale of the y axis. 

 
  



50 

Table A 27: Main models — No population weighting 

 
Model 1 Model 2 Model 3 Model 4 

N Migr, ln (Q-1) 0.550** 0.550** 0.548** 0.548** 
 (0.04) (0.04) (0.04) (0.04) 
N Migr, ln (Q-2) -0.006 -0.006 -0.005 -0.004 
 (0.04) (0.04) (0.04) (0.04) 
N Migr, ln (Q-3) 0.105** 0.105** 0.108** 0.108** 
 (0.03) (0.03) (0.03) (0.03) 
N Migr, ln (Q-4) 0.027 0.027 0.030 0.031 
 (0.03) (0.03) (0.03) (0.03) 
SPEI (Y0) 0.287** 0.283** 0.264** 0.254** 
 (0.07) (0.07) (0.07) (0.08) 
SPEI2 (Y0)  -0.026  -0.045 
  (0.08)  (0.09) 
SPEI (Y-1)   -0.120 -0.115 
   (0.08) (0.08) 
SPEI2 (Y-1)    0.026 
    (0.11) 
SPEI (Y-2)   0.005 -0.010 
   (0.08) (0.09) 
SPEI2 (Y-2)    -0.105 
    (0.12) 
2nd quarter 0.840** 0.840** 0.838** 0.838** 
 (0.08) (0.08) (0.08) (0.08) 
3rd quarter 0.815** 0.815** 0.814** 0.813** 
 (0.07) (0.07) (0.07) (0.07) 
4th quarter 0.576** 0.576** 0.576** 0.573** 
 (0.07) (0.07) (0.07) (0.07) 
Constant 0.610** 0.615** 0.575** 0.598** 
 (0.11) (0.11) (0.11) (0.11) 

Cntr FE Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes 
AIC 3921.743 3923.672 3922.991 3927.438 
Joint F test (SPEI) 16.35**  8.10**  6.42**  3.56** 
CV rmse 1.294 1.289 1.269 1.258 
N 1536 1536 1536 1536 
N Countries 64 64 64 64 
Std. errors clustered by country. CV rmse null model: 1.232. 
+ p<0.10, * p<0.05, ** p<0.01  
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Table A 28: Split sample models — No population weighting 

 
Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 Model 12 

 
High Agr. Low Agr. High Agr. Low Agri High Agr. Low Agr. High Agr. Low Agri 

N Migr, ln (Q-1) 0.526** 0.564** 0.525** 0.565** 0.526** 0.562** 0.524** 0.560** 
 (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) 
N Migr, ln (Q-2) -0.064 0.070+ -0.064 0.070+ -0.062 0.072+ -0.064 0.074+ 
 (0.05) (0.04) (0.05) (0.04) (0.05) (0.04) (0.05) (0.04) 
N Migr, ln (Q-3) 0.134** 0.061 0.134** 0.060 0.138** 0.063 0.137** 0.059 
 (0.04) (0.05) (0.04) (0.05) (0.04) (0.05) (0.03) (0.05) 
N Migr, ln (Q-4) 0.007 0.049 0.006 0.047 0.011 0.051 0.009 0.048 
 (0.03) (0.06) (0.03) (0.06) (0.04) (0.06) (0.04) (0.06) 
SPEI (Y0) 0.434** 0.162* 0.443** 0.142+ 0.403** 0.152+ 0.397** 0.101 
 (0.12) (0.08) (0.12) (0.08) (0.13) (0.08) (0.13) (0.09) 
SPEI2 (Y0)   0.064 -0.115   0.090 -0.200+ 
   (0.11) (0.11)   (0.12) (0.11) 
SPEI (Y-1)     -0.130 -0.069 -0.126 -0.098 
     (0.15) (0.08) (0.15) (0.09) 
SPEI2 (Y-1)       0.130 -0.088 
       (0.22) (0.11) 
SPEI (Y-2)     -0.024 0.048 -0.022 -0.032 
     (0.09) (0.14) (0.09) (0.16) 
SPEI2 (Y-2)       0.115 -0.286 
       (0.13) (0.20) 
2nd quarter 0.861** 0.824** 0.861** 0.827** 0.859** 0.824** 0.859** 0.829** 
 (0.11) (0.11) (0.11) (0.11) (0.11) (0.12) (0.11) (0.11) 
3rd quarter 0.794** 0.845** 0.794** 0.847** 0.789** 0.847** 0.789** 0.847** 
 (0.09) (0.11) (0.09) (0.11) (0.10) (0.11) (0.10) (0.11) 
4th quarter 0.651** 0.501** 0.651** 0.500** 0.648** 0.504** 0.647** 0.488** 
 (0.08) (0.11) (0.08) (0.11) (0.08) (0.11) (0.09) (0.11) 
Constant 0.768** 0.438* 0.762** 0.473* 0.717** 0.426* 0.687** 0.593** 
 (0.13) (0.20) (0.13) (0.20) (0.13) (0.20) (0.14) (0.20) 

Cntr FE Yes Yes Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes Yes Yes 
AIC 2026.752 1895.765 2028.532 1897.116 2029.474 1898.858 2034.095 1898.517 
Joint F test (SPEI) 12.50**  4.28*  7.26**  2.04  4.52**  2.68+  4.39**  1.65 
CV rmse 1.503 1.124 1.514 1.122 1.460 1.106 1.503 1.113 
N 768 768 768 768 768 768 768 768 
N Countries 32 32 32 32 32 32 32 32 
Std. errors clustered by country. CV rmse null models: 1.377 (agrarian sample) and 1.092 (non-agrarian sample). 
+ p<0.10, * p<0.05, ** p<0.01  
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Table A 29: Large weather shocks — No population weighting 

 
Model 13 Model 14 Model 15 Model 16 

 High Agr. Low Agr. High Agr. Low Agr. 

N Migr, ln (Q-1) 0.531** 0.564** 0.526** 0.563** 
 (0.05) (0.05) (0.05) (0.05) 
N Migr, ln (Q-2) -0.056 0.073+ -0.056 0.074+ 
 (0.05) (0.04) (0.05) (0.04) 
N Migr, ln (Q-3) 0.127** 0.060 0.129** 0.053 
 (0.04) (0.05) (0.04) (0.05) 
N Migr, ln (Q-4) 0.011 0.047 0.013 0.040 
 (0.04) (0.06) (0.04) (0.06) 
Drought (Y0) -0.394** -0.142 -0.356** -0.180+ 
 (0.12) (0.10) (0.12) (0.10) 
Drought (Y-1)   0.180 -0.174* 
   (0.12) (0.08) 
Drought (Y-2)   0.101 -0.191 
   (0.08) (0.12) 
Ex. rainfall (Y0) 0.282* 0.023 0.278* -0.010 
 (0.12) (0.09) (0.13) (0.08) 
Ex. rainfall (Y-1)   0.010 -0.075 
   (0.11) (0.12) 
Ex. rainfall (Y-2)   0.078 -0.128 
   (0.14) (0.16) 
2nd quarter 0.881** 0.823** 0.874** 0.819** 
 (0.11) (0.11) (0.11) (0.11) 
3rd quarter 0.808** 0.842** 0.809** 0.840** 
 (0.09) (0.11) (0.10) (0.10) 
4th quarter 0.659** 0.491** 0.656** 0.474** 
 (0.08) (0.11) (0.09) (0.11) 
Constant 0.704** 0.455* 0.672** 0.602** 
 (0.12) (0.20) (0.13) (0.19) 

Cntr FE Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes 

AIC 2029.799 1898.926 2035.554 1900.328 
Joint F test (SPEI)  7.99**  1.00  3.75**  1.42 
CV rmse 1.457 1.109 1.466 1.145 
N 768 768 768 768 
N Countries 32 32 32 32 
Std. errors clustered by country. CV rmse null models: 1.377 (agrarian sample)  
and 1.092 (non-agrarian sample). 
+ p<0.10, * p<0.05, ** p<0.01  
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Figure A 20: No population weighting — Immediate effects of weather shocks on migration (Model 2, Table A.27)  

 

 

 

Figure A 21: No population weighting — Immediate effects of weather shocks on migration conditional on agriculture 
reliance (Models 7 and 8, Table A.28) 
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Table A 30: Main models — Temperature and precipitation anomalies 

 
Model 1 Model 2 Model 3 Model 4 

N Migr, ln (Q-1) 0.554** 0.552** 0.549** 0.542** 
 (0.04) (0.04) (0.04) (0.04) 
N Migr, ln (Q-2) -0.005 -0.005 -0.003 -0.002 
 (0.04) (0.04) (0.04) (0.04) 
N Migr, ln (Q-3) 0.108** 0.108** 0.111** 0.112** 
 (0.03) (0.03) (0.03) (0.03) 
N Migr, ln (Q-4) 0.029 0.030 0.035 0.033 
 (0.03) (0.03) (0.03) (0.03) 
Temp (Y0) -0.004 -0.009 0.002 -0.012 
 (0.04) (0.04) (0.04) (0.04) 
Temp2 (Y0)  0.051  0.034 
  (0.04)  (0.04) 
Temp (Y-1)   0.030 0.018 
   (0.04) (0.03) 
Temp2 (Y-1)    -0.064+ 
    (0.03) 
Temp (Y-2)   -0.071 -0.086+ 
   (0.05) (0.05) 
Temp2 (Y-2)    -0.102** 
    (0.04) 
Precip (Y0) 0.106** 0.108** 0.096** 0.103** 
 (0.03) (0.03) (0.03) (0.03) 
Precip2 (Y0)  0.009  0.016 
  (0.02)  (0.02) 
Precip (Y-1)   -0.058+ -0.055 
   (0.03) (0.03) 
Precip 2 (Y-1)    0.000 
    (0.02) 
Precip (Y-2)   -0.039 -0.040 
   (0.03) (0.03) 
Precip2 (Y-2)    0.005 
    (0.02) 
2nd quarter 0.843** 0.841** 0.834** 0.835** 
 (0.08) (0.08) (0.08) (0.08) 
3rd quarter 0.816** 0.816** 0.803** 0.808** 
 (0.07) (0.07) (0.07) (0.07) 
4th quarter 0.576** 0.575** 0.567** 0.571** 
 (0.07) (0.07) (0.07) (0.07) 
Constant 0.530** 0.476** 0.497** 0.533** 
 (0.11) (0.12) (0.12) (0.14) 

Cntr FE Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes 
AIC 3924.485 3926.075 3923.301 3921.905 
Joint F test (Weather)  7.98**  4.58**  4.50**  3.47** 
CV rmse 1.229 1.234 1.223 1.239 
N 1536 1536 1536 1536 
N Countries 64 64 64 64 
Std. errors clustered by country. CV rmse null model: 1.232. 
+ p<0.10, * p<0.05, ** p<0.01  
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Table A 31: Split sample models — Temperature and precipitation anomalies 

 
Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 Model 12 

 
High Agr. Low Agr. High Agr. Low Agri High Agr. Low Agr. High Agr. Low Agri 

N Migr, ln (Q-1) 0.526** 0.565** 0.525** 0.559** 0.516** 0.562** 0.515** 0.543** 
 (0.05) (0.06) (0.05) (0.06) (0.05) (0.06) (0.05) (0.06) 
N Migr, ln (Q-2) -0.060 0.069+ -0.060 0.067+ -0.056 0.070+ -0.054 0.066+ 
 (0.05) (0.04) (0.05) (0.04) (0.05) (0.04) (0.05) (0.04) 
N Migr, ln (Q-3) 0.137** 0.062 0.138** 0.060 0.139** 0.065 0.139** 0.067 
 (0.04) (0.05) (0.04) (0.05) (0.04) (0.05) (0.04) (0.05) 
N Migr, ln (Q-4) 0.012 0.048 0.012 0.051 0.025 0.051 0.024 0.049 
 (0.04) (0.06) (0.04) (0.06) (0.03) (0.06) (0.04) (0.06) 
Temp (Y0) 0.143+ -0.054 0.146+ -0.071 0.174* -0.049 0.163+ -0.082+ 
 (0.07) (0.04) (0.08) (0.04) (0.08) (0.04) (0.08) (0.04) 
Temp2 (Y0)   0.036 0.071   0.035 0.041 
   (0.04) (0.06)   (0.03) (0.06) 
Temp (Y-1)     0.066 0.027 0.075 -0.005 
     (0.08) (0.06) (0.07) (0.05) 
Temp2 (Y-1)       -0.042 -0.081+ 
       (0.06) (0.04) 
Temp (Y-2)     -0.140+ -0.034 -0.144+ -0.061 
     (0.08) (0.07) (0.08) (0.06) 
Temp2 (Y-2)       -0.032 -0.170** 
       (0.05) (0.05) 
Precip (Y0) 0.151** 0.052+ 0.152** 0.055+ 0.122* 0.049 0.122* 0.060 
 (0.05) (0.03) (0.04) (0.03) (0.05) (0.03) (0.05) (0.04) 
Precip2 (Y0)   0.009 0.004   0.012 0.018 
   (0.02) (0.03)   (0.02) (0.03) 
Precip (Y-1)     -0.070 -0.043 -0.068 -0.044 
     (0.06) (0.04) (0.06) (0.04) 
Precip 2 (Y-1)       -0.004 0.003 
       (0.03) (0.03) 
Precip (Y-2)     -0.069* 0.003 -0.076* 0.007 
     (0.03) (0.05) (0.04) (0.05) 
Precip2 (Y-2)       0.004 0.003 
       (0.03) (0.03) 
2nd quarter 0.861** 0.825** 0.859** 0.826** 0.840** 0.822** 0.843** 0.800** 
 (0.11) (0.12) (0.11) (0.11) (0.11) (0.12) (0.11) (0.11) 
3rd quarter 0.794** 0.846** 0.792** 0.848** 0.763** 0.843** 0.769** 0.826** 
 (0.09) (0.11) (0.09) (0.11) (0.09) (0.11) (0.10) (0.11) 
4th quarter 0.649** 0.504** 0.647** 0.506** 0.625** 0.503** 0.629** 0.496** 
 (0.08) (0.11) (0.08) (0.11) (0.08) (0.11) (0.08) (0.11) 
Constant 0.524** 0.461* 0.478** 0.404* 0.434** 0.436+ 0.428* 0.566* 
 (0.14) (0.20) (0.14) (0.20) (0.13) (0.22) (0.17) (0.27) 

Cntr FE Yes Yes Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes Yes Yes 
AIC 2026.909 1897.177 2030.213 1899.195 2025.219 1902.841 2035.264 1899.833 
Joint F test (Weather)  5.82**  2.76+  3.46*  1.70  6.60**  1.92  3.98**  3.01** 
CV rmse 1.428 1.108 1.431 1.119 1.417 1.086 1.432 1.156 
N 768 768 768 768 768 768 768 768 
N Countries 32 32 32 32 32 32 32 32 
Std. errors clustered by country. CV rmse null models: 1.377 (agrarian sample) and 1.092 (non-agrarian sample). 
+ p<0.10, * p<0.05, ** p<0.01  
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Table A 32: Large weather shocks — Temperature and precipitation anomalies 

 
Model 13 Model 14 Model 15 Model 16 

 High Agr. Low Agr. High Agr. Low Agr. 

N Migr, ln (Q-1) 0.522** 0.562** 0.514** 0.547** 
 (0.05) (0.06) (0.05) (0.05) 
N Migr, ln (Q-2) -0.055 0.071+ -0.051 0.065+ 
 (0.05) (0.04) (0.05) (0.04) 
N Migr, ln (Q-3) 0.130** 0.063 0.131** 0.069 
 (0.03) (0.05) (0.03) (0.05) 
N Migr, ln (Q-4) 0.013 0.051 0.021 0.049 
 (0.04) (0.06) (0.04) (0.06) 
Hi temp (Y0) 0.242+ 0.086 0.264+ 0.018 
 (0.13) (0.11) (0.13) (0.10) 
Hi temp (Y-1)   0.073 -0.164 
   (0.14) (0.10) 
Hi temp (Y-2)   -0.121 -0.207* 
   (0.12) (0.08) 
Lo temp (Y0) -0.126 0.181 -0.137 0.110 
 (0.13) (0.16) (0.13) (0.14) 
Lo temp (Y-1)   -0.084 -0.374** 
   (0.14) (0.10) 
Lo temp (Y-2)   0.093 -0.309* 
   (0.12) (0.12) 
Hi precip (Y0) 0.349** 0.055 0.293* 0.082 
 (0.10) (0.10) (0.11) (0.10) 
Hi precip (Y-1)   -0.179 0.003 
   (0.11) (0.14) 
Hi precip (Y-2)   -0.134 0.053 
   (0.09) (0.12) 
Lo precip (Y0) -0.262+ -0.024 -0.239 0.015 
 (0.14) (0.08) (0.15) (0.08) 
Lo precip (Y-1)   0.075 -0.025 
   (0.13) (0.07) 
Lo precip (Y-2)   0.179 -0.091 
   (0.11) (0.13) 
2nd quarter 0.864** 0.829** 0.843** 0.790** 
 (0.11) (0.11) (0.12) (0.11) 
3rd quarter 0.809** 0.846** 0.782** 0.815** 
 (0.10) (0.11) (0.10) (0.11) 
4th quarter 0.652** 0.504** 0.636** 0.475** 
 (0.08) (0.11) (0.08) (0.11) 
Constant 0.555** 0.368+ 0.547** 0.548* 
 (0.14) (0.21) (0.15) (0.26) 

Cntr FE Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes 

AIC 2030.788 1901.935 2039.350 1898.095 
Joint F test (Weather)  3.65*  0.50  1.74  2.82** 
CV rmse 1.437 1.096 1.429 1.133 
N 768 768 768 768 
N Countries 32 32 32 32 
Std. errors clustered by country. CV rmse null models: 1.377 (agrarian sample)  
and 1.092 (non-agrarian sample). 
+ p<0.10, * p<0.05, ** p<0.01  
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Figure A 22: Temperature and precipitation anomalies — Immediate effects of weather shocks on migration (Model 
2, Table A.30)  

 

 

 

Figure A 23: Temperature anomalies — Immediate effects of weather shocks on migration conditional on agriculture 
reliance (Models 7 and 8, Table A.31) 
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Figure A 24: Precipitation anomalies — Immediate effects of weather shocks on migration conditional on agriculture 
reliance (Models 7 and 8 Table A.31) 
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Table A 33: Split sample models — Poorer and richer countries 

 
Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 Model 12 

 Poor Rich Poor Rich Poor Rich Poor Rich 

N Migr, ln (Q-1) 0.503** 0.557** 0.503** 0.556** 0.504** 0.555** 0.505** 0.554** 
 (0.05) (0.06) (0.05) (0.06) (0.05) (0.06) (0.05) (0.06) 
N Migr, ln (Q-2) -0.055 0.041 -0.055 0.041 -0.052 0.043 -0.053 0.045 
 (0.05) (0.04) (0.05) (0.04) (0.05) (0.04) (0.05) (0.04) 
N Migr, ln (Q-3) 0.116** 0.086 0.116** 0.086 0.120** 0.088 0.118** 0.087 
 (0.04) (0.05) (0.04) (0.05) (0.04) (0.05) (0.04) (0.05) 
N Migr, ln (Q-4) 0.014 0.051 0.014 0.052 0.016 0.055 0.018 0.058 
 (0.04) (0.06) (0.04) (0.06) (0.04) (0.06) (0.04) (0.06) 
SPEI (Y0) 0.359** 0.244** 0.350** 0.242** 0.303* 0.236** 0.304* 0.248* 
 (0.12) (0.09) (0.12) (0.08) (0.14) (0.08) (0.14) (0.10) 
SPEI2 (Y0)   -0.053 0.054   0.014 0.024 
   (0.15) (0.10)   (0.18) (0.10) 
SPEI (Y-1)     -0.209 -0.072 -0.176 -0.056 
     (0.18) (0.09) (0.17) (0.08) 
SPEI2 (Y-1)       0.269 -0.182 
       (0.18) (0.15) 
SPEI (Y-2)     -0.018 0.050 -0.012 0.062 
     (0.09) (0.13) (0.10) (0.13) 
SPEI2 (Y-2)       0.203 -0.088 
       (0.25) (0.16) 
2nd quarter 0.982** 0.688** 0.981** 0.687** 0.981** 0.687** 0.984** 0.685** 
 (0.11) (0.11) (0.11) (0.11) (0.11) (0.11) (0.11) (0.11) 
3rd quarter 0.850** 0.792** 0.850** 0.791** 0.846** 0.791** 0.842** 0.784** 
 (0.08) (0.12) (0.08) (0.12) (0.08) (0.12) (0.09) (0.12) 
4th quarter 0.655** 0.532** 0.656** 0.533** 0.651** 0.534** 0.641** 0.523** 
 (0.09) (0.11) (0.09) (0.11) (0.09) (0.10) (0.09) (0.11) 
Constant 0.688** 0.526* 0.695** 0.516* 0.640** 0.509* 0.595** 0.561* 
 (0.13) (0.24) (0.13) (0.24) (0.12) (0.23) (0.14) (0.24) 

Cntr FE Yes Yes Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes Yes Yes 
AIC 1920.966 1984.096 1922.877 1985.906 1922.177 1987.004 1925.569 1990.199 
Joint F test (SPEI)  8.34**  8.11**  4.34*  5.40**  3.11*  2.72+  4.10**  1.80 
CV rmse 1.587 1.117 1.584 1.113 1.542 1.099 1.582 1.093 
N 744 792 744 792 744 792 744 792 
N Countries 31 33 31 33 31 33 31 33 
Std. errors clustered by country. CV rmse null models: 1.538 (Poor sample) and 1.061 (Rich sample). 
+ p<0.10, * p<0.05, ** p<0.01  
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Table A 34: Large weather shocks — Poorer and richer countries 

 
Model 13 Model 14 Model 15 Model 16 

 Poor Rich Poor Rich 

N Migr, ln (Q-1) 0.507** 0.561** 0.504** 0.562** 
 (0.05) (0.06) (0.05) (0.06) 
N Migr, ln (Q-2) -0.055 0.042 -0.053 0.053 
 (0.05) (0.04) (0.05) (0.04) 
N Migr, ln (Q-3) 0.108** 0.089+ 0.112** 0.088+ 
 (0.04) (0.05) (0.04) (0.05) 
N Migr, ln (Q-4) 0.014 0.051 0.014 0.047 
 (0.04) (0.06) (0.04) (0.05) 
Drought (Y0) -0.329+ -0.110 -0.299+ -0.145 
 (0.16) (0.11) (0.17) (0.11) 
Drought (Y-1)   0.192 -0.119 
   (0.17) (0.11) 
Drought (Y-2)   0.026 -0.228 
   (0.12) (0.16) 
Ex. rainfall (Y0) 0.225* 0.228* 0.210+ 0.210* 
 (0.11) (0.09) (0.11) (0.09) 
Ex. rainfall (Y-1)   -0.088 -0.112 
   (0.16) (0.10) 
Ex. rainfall (Y-2)   0.062 -0.067 
   (0.14) (0.14) 
2nd quarter 0.992** 0.687** 0.985** 0.684** 
 (0.11) (0.11) (0.11) (0.11) 
3rd quarter 0.848** 0.783** 0.847** 0.784** 
 (0.08) (0.12) (0.08) (0.12) 
4th quarter 0.652** 0.524** 0.649** 0.522** 
 (0.09) (0.11) (0.09) (0.11) 
Constant 0.703** 0.481+ 0.676** 0.551* 
 (0.14) (0.24) (0.14) (0.22) 

Cntr FE Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes 

AIC 1923.592 1987.214 1929.100 1989.597 
Joint F test (SPEI)  4.69*  3.91*  2.07+  1.65 
CV rmse 1.594 1.093 1.581 1.086 
N 744 792 744 792 
N Countries 31 33 31 33 
Std. errors clustered by country. CV rmse null models: 1.538 (Poor sample)  
and 1.061 (Rich sample). 
+ p<0.10, * p<0.05, ** p<0.01  
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Figure A 25: Poorer and richer countries — Immediate effects of weather shocks on migration (Models 7 and 8, 
Table A.33) 
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Table A 35: Split sample models — Africa vs Non-Africa samples 

 
Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 Model 12 

 Africa Not Afr. Africa Not Afr. Africa Not Afr. Africa Not Afr. 

N Migr, ln (Q-1) 0.480** 0.578** 0.479** 0.574** 0.480** 0.576** 0.479** 0.571** 
 (0.04) (0.06) (0.04) (0.06) (0.04) (0.06) (0.04) (0.06) 
N Migr, ln (Q-2) -0.038 0.036 -0.037 0.035 -0.036 0.038 -0.037 0.039 
 (0.04) (0.06) (0.04) (0.06) (0.04) (0.06) (0.04) (0.06) 
N Migr, ln (Q-3) 0.092* 0.122** 0.091* 0.121** 0.094* 0.126** 0.093* 0.124** 
 (0.04) (0.03) (0.04) (0.03) (0.04) (0.04) (0.04) (0.04) 
N Migr, ln (Q-4) 0.032 0.052 0.033 0.055 0.034 0.053 0.036 0.059 
 (0.04) (0.05) (0.04) (0.05) (0.04) (0.05) (0.04) (0.05) 
SPEI (Y0) 0.415** 0.201+ 0.397** 0.197+ 0.384** 0.200+ 0.373** 0.207+ 
 (0.09) (0.10) (0.09) (0.10) (0.10) (0.10) (0.11) (0.10) 
SPEI2 (Y0)   -0.109 0.100   -0.090 0.100 
   (0.16) (0.09)   (0.17) (0.09) 
SPEI (Y-1)     -0.100 -0.059 -0.088 -0.055 
     (0.13) (0.11) (0.13) (0.11) 
SPEI2 (Y-1)       0.168 -0.096 
       (0.17) (0.17) 
SPEI (Y-2)     -0.088 0.123 -0.090 0.132 
     (0.10) (0.13) (0.10) (0.13) 
SPEI2 (Y-2)       0.039 -0.012 
       (0.15) (0.17) 
2nd quarter 0.884** 0.730** 0.884** 0.726** 0.884** 0.729** 0.883** 0.723** 
 (0.09) (0.13) (0.09) (0.13) (0.09) (0.13) (0.09) (0.13) 
3rd quarter 0.902** 0.689** 0.902** 0.686** 0.898** 0.690** 0.898** 0.685** 
 (0.08) (0.13) (0.08) (0.13) (0.08) (0.13) (0.08) (0.13) 
4th quarter 0.613** 0.567** 0.614** 0.566** 0.609** 0.570** 0.609** 0.566** 
 (0.09) (0.10) (0.10) (0.10) (0.09) (0.10) (0.10) (0.10) 
Constant 0.749** 0.381 0.765** 0.366 0.738** 0.375 0.722** 0.375 
 (0.12) (0.27) (0.12) (0.28) (0.12) (0.25) (0.14) (0.25) 

Cntr FE Yes Yes Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes Yes Yes 
AIC 2335.103 1551.783 2336.753 1553.095 2337.999 1553.417 2342.702 1557.851 
Joint F test (SPEI) 20.97**  3.99+ 10.60**  3.76*  8.77**  1.71  5.75**  1.74 
CV rmse 1.640 0.994 1.633 0.991 1.614 0.980 1.619 0.984 
N 912 624 912 624 912 624 912 624 
N Countries 38 26 38 26 38 26 38 26 
Std errors clustered by country. CV rmse null models: 1.565 (Africa sample) and 0.96 (non-Africa sample). 
+ p<0.10, * p<0.05, ** p<0.01  
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Table A 36: Large weather shocks — Africa vs Non-Africa samples 

 
Model 13 Model 14 Model 15 Model 16 

 Africa Not Afr. Africa Not Afr. 

N Migr, ln (Q-1) 0.485** 0.582** 0.481** 0.576** 
 (0.05) (0.06) (0.05) (0.06) 
N Migr, ln (Q-2) -0.036 0.037 -0.037 0.049 
 (0.04) (0.06) (0.04) (0.06) 
N Migr, ln (Q-3) 0.089* 0.122** 0.089* 0.121** 
 (0.04) (0.03) (0.04) (0.03) 
N Migr, ln (Q-4) 0.031 0.051 0.034 0.049 
 (0.04) (0.05) (0.04) (0.05) 
Drought (Y0) -0.275+ -0.091 -0.255+ -0.116 
 (0.14) (0.12) (0.14) (0.12) 
Drought (Y-1)   0.167 -0.137 
   (0.13) (0.11) 
Drought (Y-2)   0.154 -0.363* 
   (0.11) (0.16) 
Ex. rainfall (Y0) 0.261** 0.189+ 0.262** 0.208+ 
 (0.09) (0.10) (0.09) (0.10) 
Ex. rainfall (Y-1)   0.035 -0.123 
   (0.14) (0.08) 
Ex. rainfall (Y-2)   -0.116 0.074 
   (0.13) (0.15) 
2nd quarter 0.889** 0.732** 0.891** 0.735** 
 (0.09) (0.13) (0.09) (0.13) 
3rd quarter 0.901** 0.678** 0.901** 0.686** 
 (0.08) (0.13) (0.08) (0.12) 
4th quarter 0.613** 0.554** 0.610** 0.560** 
 (0.09) (0.10) (0.10) (0.10) 
Constant 0.740** 0.349 0.730** 0.428+ 
 (0.12) (0.27) (0.13) (0.23) 

Cntr FE Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes 

AIC 2341.538 1554.578 2345.575 1552.597 
Joint F test (SPEI)  6.70**  1.97  3.09*  2.06 
CV rmse 1.623 0.982 1.629 0.996 
N 912 624 912 624 
N Countries 38 26 38 26 
Std. errors clustered by country. CV rmse null models: 1.56 (Africa sample)  
and 0.96 (non-Africa sample). 
+ p<0.10, * p<0.05, ** p<0.01  
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Figure A 26: Africa vs non-Africa sample — Immediate effects of weather shocks on migration (Models 7 and 8, 
Table A.35) 
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Table A 37: Main Models — Adding excluded migration routes 

 
Model 1 Model 2 Model 3 Model 4 

N Migr, ln (Q-1) 0.583** 0.580** 0.580** 0.577** 
 (0.04) (0.04) (0.04) (0.04) 
N Migr, ln (Q-2) -0.053 -0.053 -0.051 -0.053 
 (0.04) (0.04) (0.04) (0.04) 
N Migr, ln (Q-3) 0.108** 0.108** 0.113** 0.112** 
 (0.03) (0.03) (0.03) (0.03) 
N Migr, ln (Q-4) 0.033 0.034 0.040 0.040 
 (0.03) (0.03) (0.03) (0.03) 
SPEI (Y0) 0.169** 0.167** 0.138+ 0.142* 
 (0.06) (0.06) (0.07) (0.07) 
SPEI2 (Y0)  0.133*  0.162* 
  (0.06)  (0.06) 
SPEI (Y-1)   -0.173* -0.173* 
   (0.08) (0.08) 
SPEI2 (Y-1)    0.073 
    (0.10) 
SPEI (Y-2)   0.016 0.015 
   (0.07) (0.07) 
SPEI2 (Y-2)    0.099 
    (0.11) 
2nd quarter 0.766** 0.766** 0.763** 0.766** 
 (0.07) (0.07) (0.07) (0.07) 
3rd quarter 0.666** 0.667** 0.664** 0.669** 
 (0.07) (0.07) (0.07) (0.07) 
4th quarter 0.442** 0.442** 0.443** 0.444** 
 (0.07) (0.07) (0.07) (0.07) 
Constant 0.702** 0.679** 0.667** 0.615** 
 (0.11) (0.11) (0.11) (0.11) 

Cntr FE Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes 
AIC 4182.796 4182.323 4179.152 4180.719 
Joint F test (SPEI)  7.08**  6.73**  4.88**  4.03** 
CV rmse 1.283 1.287 1.255 1.276 
N 1694 1694 1694 1694 
N Countries 71 71 71 71 
Std errors clustered by country. CV rmse null model: 1.243 
+ p<0.10, * p<0.05, ** p<0.01  
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Table A 38: Split sample models — Adding excluded migration routes 

 
Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 Model 12 

 
High Agr. Low Agr. High Agr. Low Agri High Agr. Low Agr. High Agr. Low Agri 

N Migr, ln (Q-1) 0.569** 0.591** 0.563** 0.591** 0.566** 0.589** 0.558** 0.588** 
 (0.05) (0.06) (0.05) (0.06) (0.05) (0.06) (0.05) (0.06) 
N Migr, ln (Q-2) -0.101+ 0.016 -0.101+ 0.015 -0.098+ 0.016 -0.100+ 0.016 
 (0.05) (0.04) (0.05) (0.04) (0.05) (0.04) (0.05) (0.04) 
N Migr, ln (Q-3) 0.143** 0.057 0.143** 0.057 0.151** 0.058 0.151** 0.059 
 (0.04) (0.05) (0.04) (0.05) (0.04) (0.05) (0.04) (0.05) 
N Migr, ln (Q-4) 0.005 0.067 0.007 0.068 0.015 0.070 0.016 0.071 
 (0.03) (0.06) (0.03) (0.06) (0.04) (0.06) (0.04) (0.06) 
SPEI (Y0) 0.275* 0.080 0.280* 0.078 0.224+ 0.068 0.233+ 0.066 
 (0.12) (0.06) (0.11) (0.07) (0.13) (0.07) (0.12) (0.07) 
SPEI2 (Y0)   0.232** 0.043   0.266** 0.065 
   (0.08) (0.08)   (0.09) (0.08) 
SPEI (Y-1)     -0.259+ -0.081 -0.269* -0.084 
     (0.13) (0.08) (0.13) (0.08) 
SPEI2 (Y-1)       0.029 0.086 
       (0.18) (0.09) 
SPEI (Y-2)     0.009 0.033 0.001 0.031 
     (0.07) (0.13) (0.07) (0.13) 
SPEI2 (Y-2)       0.248 -0.004 
       (0.16) (0.16) 
2nd quarter 0.797** 0.740** 0.801** 0.740** 0.792** 0.739** 0.801** 0.740** 
 (0.10) (0.11) (0.10) (0.11) (0.10) (0.11) (0.10) (0.11) 
3rd quarter 0.649** 0.693** 0.658** 0.692** 0.643** 0.693** 0.660** 0.694** 
 (0.09) (0.10) (0.09) (0.10) (0.09) (0.10) (0.10) (0.11) 
4th quarter 0.501** 0.381** 0.504** 0.380** 0.500** 0.383** 0.505** 0.383** 
 (0.08) (0.11) (0.08) (0.10) (0.08) (0.10) (0.08) (0.11) 
Constant 0.798** 0.581** 0.775** 0.569* 0.732** 0.568* 0.682** 0.534* 
 (0.11) (0.21) (0.12) (0.21) (0.10) (0.21) (0.12) (0.21) 

Cntr FE Yes Yes Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes Yes Yes 
AIC 2248.876 1939.282 2247.407 1941.140 2245.463 1942.068 2244.986 1947.295 
Joint F test (SPEI)  5.43*  1.55  6.07**  1.17  3.37*  1.65  5.03**  1.26 
CV rmse 1.434 1.141 1.459 1.137 1.377 1.122 1.438 1.129 
N 888 806 888 806 888 806 888 806 
N Countries 37 34 37 34 37 34 37 34 
Std errors clustered by country. CV rmse null models: 1.358 (agrarian sample) and 1.124 (non-agrarian sample). 
+ p<0.10, * p<0.05, ** p<0.01  
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Table A 39: Large Weather Shocks — Adding excluded migration routes 

 
Model 13 Model 14 Model 15 Model 16 

 High Agr. Low Agr. High Agr. Low Agr. 

N Migr, ln (Q-1) 0.573** 0.592** 0.562** 0.591** 
 (0.05) (0.06) (0.05) (0.06) 
N Migr, ln (Q-2) -0.100+ 0.015 -0.103* 0.016 
 (0.05) (0.04) (0.05) (0.04) 
N Migr, ln (Q-3) 0.144** 0.057 0.155** 0.059 
 (0.04) (0.05) (0.04) (0.05) 
N Migr, ln (Q-4) 0.006 0.069 0.011 0.065 
 (0.03) (0.06) (0.03) (0.06) 
Drought (Y0) -0.122 0.025 -0.071 0.019 
 (0.10) (0.10) (0.10) (0.11) 
Drought (Y-1)   0.334* 0.006 
   (0.13) (0.11) 
Drought (Y-2)   0.097 -0.151 
   (0.10) (0.14) 
Ex. rainfall (Y0) 0.272+ 0.076 0.283+ 0.044 
 (0.15) (0.05) (0.15) (0.05) 
Ex. rainfall (Y-1)   -0.173 -0.027 
   (0.13) (0.08) 
Ex. rainfall (Y-2)   0.261** -0.121 
   (0.09) (0.16) 
2nd quarter 0.802** 0.741** 0.800** 0.739** 
 (0.10) (0.11) (0.10) (0.11) 
3rd quarter 0.652** 0.689** 0.662** 0.695** 
 (0.09) (0.10) (0.10) (0.10) 
4th quarter 0.495** 0.376** 0.504** 0.384** 
 (0.08) (0.11) (0.08) (0.10) 
Constant 0.760** 0.560* 0.708** 0.612** 
 (0.11) (0.21) (0.11) (0.20) 

Cntr FE Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes 

AIC 2252.947 1941.721 2244.728 1946.504 
Joint F test (SPEI)  2.28  0.99  4.91**  0.73 
CV rmse 1.425 1.129 1.428 1.138 
N 888 806 888 806 
N Countries 37 34 37 34 
Std errors clustered by country. CV rmse null models: 1.358 (agrarian sample)  
and 1.124 (non-agrarian sample). 
+ p<0.10, * p<0.05, ** p<0.01  
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Figure A 27: Adding excluded migration routes — Immediate effects of weather shocks on migration with 95% 
confidence interval (Model 2, Table A.37). 

 

 

Figure A 28: Adding excluded migration routes — Immediate effects of weather shocks on migration conditional on 
agriculture reliance with 95% confidence interval (Model 7 and 8, Table A.38)  
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Table A 40: Main Models — Adjusting for spatial and serial correlation 

 
Model 1 Model 2 Model 3 Model 4 

N Migr, ln (Q-1) 0.549** 0.548** 0.548** 0.547** 
 (0.03) (0.03) (0.03) (0.03) 
N Migr, ln (Q-2) -0.006 -0.007 -0.005 -0.006 
 (0.04) (0.04) (0.04) (0.04) 
N Migr, ln (Q-3) 0.106** 0.106** 0.109** 0.109** 
 (0.03) (0.03) (0.03) (0.03) 
N Migr, ln (Q-4) 0.028 0.029 0.032 0.032 
 (0.03) (0.03) (0.03) (0.03) 
SPEI (Y0) 0.304** 0.306** 0.279** 0.280** 
 (0.07) (0.07) (0.07) (0.07) 
SPEI2 (Y0)  0.053  0.060 
  (0.09)  (0.10) 
SPEI (Y-1)   -0.136 -0.135 
   (0.09) (0.09) 
SPEI2 (Y-1)    0.034 
    (0.12) 
SPEI (Y-2)   0.003 0.005 
   (0.08) (0.08) 
SPEI2 (Y-2)    0.020 
    (0.11) 
2nd quarter 0.840** 0.839** 0.838** 0.838** 
 (0.08) (0.08) (0.08) (0.08) 
3rd quarter 0.815** 0.815** 0.813** 0.813** 
 (0.08) (0.08) (0.08) (0.08) 
4th quarter 0.578** 0.577** 0.577** 0.577** 
 (0.08) (0.08) (0.08) (0.08) 
Constant -0.270 1.994** 1.994** 1.983** 
 (0.19) (0.28) (0.28) (0.28) 

Cntr FE Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes 
Joint F test (SPEI) 16.59**  8.59**  6.29**  3.36** 
N 1536 1536 1536 1536 
N Countries 64 64 64 64 
Std errors adjusted for spatial (cutofff distamce 1,000 km) and serial (2 lags) correlation. 
+ p<0.10, * p<0.05, ** p<0.01  
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Table A 41: Split sample models — Adjusting for spatial and serial correlation 

 
Model 5 Model 6 Model 7 Model 8 Model 9 Model 10 Model 11 Model 12 

 
High Agr. Low Agr. High Agr. Low Agri High Agr. Low Agr. High Agr. Low Agri 

N Migr, ln (Q-1) 0.524** 0.564** 0.524** 0.564** 0.525** 0.562** 0.524** 0.561** 
 (0.04) (0.05) (0.04) (0.05) (0.04) (0.05) (0.04) (0.05) 
N Migr, ln (Q-2) -0.062 0.069 -0.063 0.069 -0.060 0.070 -0.062 0.071 
 (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) 
N Migr, ln (Q-3) 0.137** 0.061 0.136** 0.061 0.140** 0.063 0.140** 0.064 
 (0.04) (0.05) (0.04) (0.05) (0.04) (0.05) (0.04) (0.05) 
N Migr, ln (Q-4) 0.008 0.050 0.008 0.050 0.012 0.052 0.012 0.053 
 (0.03) (0.05) (0.03) (0.05) (0.04) (0.05) (0.04) (0.05) 
SPEI (Y0) 0.464** 0.169+ 0.467** 0.171+ 0.429** 0.158+ 0.421** 0.150+ 
 (0.12) (0.09) (0.12) (0.09) (0.12) (0.09) (0.12) (0.09) 
SPEI2 (Y0)   0.067 0.045   0.086 0.030 
   (0.12) (0.13)   (0.14) (0.13) 
SPEI (Y-1)     -0.159 -0.076 -0.171 -0.074 
     (0.13) (0.11) (0.12) (0.11) 
SPEI2 (Y-1)       0.049 -0.012 
       (0.20) (0.13) 
SPEI (Y-2)     -0.024 0.042 -0.041 0.038 
     (0.11) (0.11) (0.12) (0.11) 
SPEI2 (Y-2)       0.183 -0.128 
       (0.19) (0.14) 
2nd quarter 0.861** 0.824** 0.861** 0.823** 0.860** 0.823** 0.861** 0.822** 
 (0.11) (0.11) (0.11) (0.11) (0.11) (0.11) (0.11) (0.11) 
3rd quarter 0.796** 0.845** 0.796** 0.844** 0.791** 0.845** 0.792** 0.844** 
 (0.10) (0.10) (0.10) (0.10) (0.10) (0.10) (0.10) (0.10) 
4th quarter 0.654** 0.501** 0.654** 0.502** 0.650** 0.503** 0.650** 0.500** 
 (0.09) (0.11) (0.09) (0.11) (0.09) (0.11) (0.09) (0.11) 
Constant -0.454* 1.719** -0.468* 1.708** 1.953** 0.987** 2.364** 0.996** 
 (0.18) (0.35) (0.19) (0.35) (0.35) (0.33) (0.37) (0.32) 

Cntr FE Yes Yes Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes Yes Yes 
Joint F test (SPEI) 16.04**  3.64+  8.20**  1.90  6.12**  1.41  3.78**  0.99 
N 768 768 768 768 768 768 768 768 
N Countries 32 32 32 32 32 32 32 32 
Std errors adjusted for spatial (cutofff distamce 1,000 km) and serial (2 lags) correlation.  
+ p<0.10, * p<0.05, ** p<0.01  
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Table A 42: Large Weather Shocks — Adjusting for spatial and serial correlation 

 
Model 13 Model 14 Model 15 Model 16 

 High Agr. Low Agr. High Agr. Low Agr. 

N Migr, ln (Q-1) 0.532** 0.567** 0.527** 0.564** 
 (0.04) (0.05) (0.04) (0.05) 
N Migr, ln (Q-2) -0.060 0.069 -0.063 0.078 
 (0.05) (0.05) (0.05) (0.05) 
N Migr, ln (Q-3) 0.131** 0.061 0.138** 0.063 
 (0.04) (0.05) (0.04) (0.05) 
N Migr, ln (Q-4) 0.008 0.049 0.009 0.042 
 (0.04) (0.05) (0.04) (0.05) 
Drought (Y0) -0.312* -0.063 -0.267+ -0.103 
 (0.14) (0.11) (0.15) (0.11) 
Drought (Y-1)   0.230+ -0.130 
   (0.14) (0.14) 
Drought (Y-2)   0.068 -0.246+ 
   (0.14) (0.14) 
Ex. rainfall (Y0) 0.375** 0.155+ 0.366** 0.116 
 (0.14) (0.09) (0.14) (0.09) 
Ex. rainfall (Y-1)   -0.055 -0.110 
   (0.11) (0.10) 
Ex. rainfall (Y-2)   0.134 -0.140 
   (0.13) (0.10) 
2nd quarter 0.872** 0.825** 0.867** 0.824** 
 (0.11) (0.11) (0.11) (0.11) 
3rd quarter 0.799** 0.836** 0.800** 0.846** 
 (0.10) (0.10) (0.10) (0.10) 
4th quarter 0.653** 0.492** 0.655** 0.502** 
 (0.09) (0.11) (0.10) (0.11) 
Constant 2.381** 1.697** -0.583** 1.814** 
 (0.37) (0.36) (0.20) (0.34) 

Cntr FE Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes 

Joint F test (SPEI)  5.77**  1.79  3.19**  1.84+ 
N 768 768 768 768 
N Countries 32 32 32 32 
Std errors adjusted for spatial (cutofff distamce 1,000 km) and serial (2 lags) correlation. 
+ p<0.10, * p<0.05, ** p<0.01  
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Figure A 29: Adjusting for spatial and serial correlation — Immediate effects of weather shocks on migration with 
95% confidence interval (Model 2, Table A.40). 

 

 

  

Figure A 30: Adjusting for spatial and serial correlation — Immediate effects of weather shocks on migration 
conditional on agriculture reliance with 95% confidence interval (Model 7 and 8, Table A.41)  

 


